forked from 170010011/fr
334 lines
13 KiB
Python
334 lines
13 KiB
Python
|
import warnings
|
||
|
from collections.abc import Iterable
|
||
|
import numpy as np
|
||
|
from scipy import ndimage as ndi
|
||
|
from scipy.spatial.distance import pdist, squareform
|
||
|
from scipy.cluster.vq import kmeans2
|
||
|
from numpy import random
|
||
|
|
||
|
from ._slic import (_slic_cython, _enforce_label_connectivity_cython)
|
||
|
from ..util import img_as_float, regular_grid
|
||
|
from ..color import rgb2lab
|
||
|
|
||
|
|
||
|
def _get_mask_centroids(mask, n_centroids, multichannel):
|
||
|
"""Find regularly spaced centroids on a mask.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mask : 3D ndarray
|
||
|
The mask within which the centroids must be positioned.
|
||
|
n_centroids : int
|
||
|
The number of centroids to be returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
centroids : 2D ndarray
|
||
|
The coordinates of the centroids with shape (n_centroids, 3).
|
||
|
steps : 1D ndarray
|
||
|
The approximate distance between two seeds in all dimensions.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Get tight ROI around the mask to optimize
|
||
|
coord = np.array(np.nonzero(mask), dtype=float).T
|
||
|
# Fix random seed to ensure repeatability
|
||
|
rnd = random.RandomState(123)
|
||
|
|
||
|
# select n_centroids randomly distributed points from within the mask
|
||
|
idx_full = np.arange(len(coord), dtype=int)
|
||
|
idx = np.sort(rnd.choice(idx_full,
|
||
|
min(n_centroids, len(coord)),
|
||
|
replace=False))
|
||
|
|
||
|
# To save time, when n_centroids << len(coords), use only a subset of the
|
||
|
# coordinates when calling k-means. Rather than the full set of coords,
|
||
|
# we will use a substantially larger subset than n_centroids. Here we
|
||
|
# somewhat arbitrarily choose dense_factor=10 to make the samples
|
||
|
# 10 times closer together along each axis than the n_centroids samples.
|
||
|
dense_factor = 10
|
||
|
ndim_spatial = mask.ndim - 1 if multichannel else mask.ndim
|
||
|
n_dense = int((dense_factor ** ndim_spatial) * n_centroids)
|
||
|
if len(coord) > n_dense:
|
||
|
# subset of points to use for the k-means calculation
|
||
|
# (much denser than idx, but less than the full set)
|
||
|
idx_dense = np.sort(rnd.choice(idx_full,
|
||
|
n_dense,
|
||
|
replace=False))
|
||
|
else:
|
||
|
idx_dense = Ellipsis
|
||
|
centroids, _ = kmeans2(coord[idx_dense], coord[idx], iter=5)
|
||
|
|
||
|
# Compute the minimum distance of each centroid to the others
|
||
|
dist = squareform(pdist(centroids))
|
||
|
np.fill_diagonal(dist, np.inf)
|
||
|
closest_pts = dist.argmin(-1)
|
||
|
steps = abs(centroids - centroids[closest_pts, :]).mean(0)
|
||
|
|
||
|
return centroids, steps
|
||
|
|
||
|
|
||
|
def _get_grid_centroids(image, n_centroids):
|
||
|
"""Find regularly spaced centroids on the image.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : 2D, 3D or 4D ndarray
|
||
|
Input image, which can be 2D or 3D, and grayscale or
|
||
|
multichannel.
|
||
|
n_centroids : int
|
||
|
The (approximate) number of centroids to be returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
centroids : 2D ndarray
|
||
|
The coordinates of the centroids with shape (~n_centroids, 3).
|
||
|
steps : 1D ndarray
|
||
|
The approximate distance between two seeds in all dimensions.
|
||
|
|
||
|
"""
|
||
|
d, h, w = image.shape[:3]
|
||
|
|
||
|
grid_z, grid_y, grid_x = np.mgrid[:d, :h, :w]
|
||
|
slices = regular_grid(image.shape[:3], n_centroids)
|
||
|
|
||
|
centroids_z = grid_z[slices].ravel()[..., np.newaxis]
|
||
|
centroids_y = grid_y[slices].ravel()[..., np.newaxis]
|
||
|
centroids_x = grid_x[slices].ravel()[..., np.newaxis]
|
||
|
|
||
|
centroids = np.concatenate([centroids_z, centroids_y, centroids_x],
|
||
|
axis=-1)
|
||
|
|
||
|
steps = np.asarray([float(s.step) if s.step is not None else 1.0
|
||
|
for s in slices])
|
||
|
return centroids, steps
|
||
|
|
||
|
|
||
|
def slic(image, n_segments=100, compactness=10., max_iter=10, sigma=0,
|
||
|
spacing=None, multichannel=True, convert2lab=None,
|
||
|
enforce_connectivity=True, min_size_factor=0.5, max_size_factor=3,
|
||
|
slic_zero=False, start_label=None, mask=None):
|
||
|
"""Segments image using k-means clustering in Color-(x,y,z) space.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : 2D, 3D or 4D ndarray
|
||
|
Input image, which can be 2D or 3D, and grayscale or multichannel
|
||
|
(see `multichannel` parameter).
|
||
|
Input image must either be NaN-free or the NaN's must be masked out
|
||
|
n_segments : int, optional
|
||
|
The (approximate) number of labels in the segmented output image.
|
||
|
compactness : float, optional
|
||
|
Balances color proximity and space proximity. Higher values give
|
||
|
more weight to space proximity, making superpixel shapes more
|
||
|
square/cubic. In SLICO mode, this is the initial compactness.
|
||
|
This parameter depends strongly on image contrast and on the
|
||
|
shapes of objects in the image. We recommend exploring possible
|
||
|
values on a log scale, e.g., 0.01, 0.1, 1, 10, 100, before
|
||
|
refining around a chosen value.
|
||
|
max_iter : int, optional
|
||
|
Maximum number of iterations of k-means.
|
||
|
sigma : float or (3,) array-like of floats, optional
|
||
|
Width of Gaussian smoothing kernel for pre-processing for each
|
||
|
dimension of the image. The same sigma is applied to each dimension in
|
||
|
case of a scalar value. Zero means no smoothing.
|
||
|
Note, that `sigma` is automatically scaled if it is scalar and a
|
||
|
manual voxel spacing is provided (see Notes section).
|
||
|
spacing : (3,) array-like of floats, optional
|
||
|
The voxel spacing along each image dimension. By default, `slic`
|
||
|
assumes uniform spacing (same voxel resolution along z, y and x).
|
||
|
This parameter controls the weights of the distances along z, y,
|
||
|
and x during k-means clustering.
|
||
|
multichannel : bool, optional
|
||
|
Whether the last axis of the image is to be interpreted as multiple
|
||
|
channels or another spatial dimension.
|
||
|
convert2lab : bool, optional
|
||
|
Whether the input should be converted to Lab colorspace prior to
|
||
|
segmentation. The input image *must* be RGB. Highly recommended.
|
||
|
This option defaults to ``True`` when ``multichannel=True`` *and*
|
||
|
``image.shape[-1] == 3``.
|
||
|
enforce_connectivity : bool, optional
|
||
|
Whether the generated segments are connected or not
|
||
|
min_size_factor : float, optional
|
||
|
Proportion of the minimum segment size to be removed with respect
|
||
|
to the supposed segment size ```depth*width*height/n_segments```
|
||
|
max_size_factor : float, optional
|
||
|
Proportion of the maximum connected segment size. A value of 3 works
|
||
|
in most of the cases.
|
||
|
slic_zero : bool, optional
|
||
|
Run SLIC-zero, the zero-parameter mode of SLIC. [2]_
|
||
|
start_label: int, optional
|
||
|
The labels' index start. Should be 0 or 1.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
``start_label`` was introduced in 0.17
|
||
|
mask : 2D ndarray, optional
|
||
|
If provided, superpixels are computed only where mask is True,
|
||
|
and seed points are homogeneously distributed over the mask
|
||
|
using a K-means clustering strategy.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
``mask`` was introduced in 0.17
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
labels : 2D or 3D array
|
||
|
Integer mask indicating segment labels.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If ``convert2lab`` is set to ``True`` but the last array
|
||
|
dimension is not of length 3.
|
||
|
ValueError
|
||
|
If ``start_label`` is not 0 or 1.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
* If `sigma > 0`, the image is smoothed using a Gaussian kernel prior to
|
||
|
segmentation.
|
||
|
|
||
|
* If `sigma` is scalar and `spacing` is provided, the kernel width is
|
||
|
divided along each dimension by the spacing. For example, if ``sigma=1``
|
||
|
and ``spacing=[5, 1, 1]``, the effective `sigma` is ``[0.2, 1, 1]``. This
|
||
|
ensures sensible smoothing for anisotropic images.
|
||
|
|
||
|
* The image is rescaled to be in [0, 1] prior to processing.
|
||
|
|
||
|
* Images of shape (M, N, 3) are interpreted as 2D RGB images by default. To
|
||
|
interpret them as 3D with the last dimension having length 3, use
|
||
|
`multichannel=False`.
|
||
|
|
||
|
* `start_label` is introduced to handle the issue [4]_. The labels
|
||
|
indexing starting at 0 will be deprecated in future versions. If
|
||
|
`mask` is not `None` labels indexing starts at 1 and masked area
|
||
|
is set to 0.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,
|
||
|
Pascal Fua, and Sabine Süsstrunk, SLIC Superpixels Compared to
|
||
|
State-of-the-art Superpixel Methods, TPAMI, May 2012.
|
||
|
:DOI:`10.1109/TPAMI.2012.120`
|
||
|
.. [2] https://www.epfl.ch/labs/ivrl/research/slic-superpixels/#SLICO
|
||
|
.. [3] Irving, Benjamin. "maskSLIC: regional superpixel generation with
|
||
|
application to local pathology characterisation in medical images.",
|
||
|
2016, :arXiv:`1606.09518`
|
||
|
.. [4] https://github.com/scikit-image/scikit-image/issues/3722
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage.segmentation import slic
|
||
|
>>> from skimage.data import astronaut
|
||
|
>>> img = astronaut()
|
||
|
>>> segments = slic(img, n_segments=100, compactness=10)
|
||
|
|
||
|
Increasing the compactness parameter yields more square regions:
|
||
|
|
||
|
>>> segments = slic(img, n_segments=100, compactness=20)
|
||
|
|
||
|
"""
|
||
|
|
||
|
image = img_as_float(image)
|
||
|
use_mask = mask is not None
|
||
|
dtype = image.dtype
|
||
|
|
||
|
is_2d = False
|
||
|
|
||
|
if image.ndim == 2:
|
||
|
# 2D grayscale image
|
||
|
image = image[np.newaxis, ..., np.newaxis]
|
||
|
is_2d = True
|
||
|
elif image.ndim == 3 and multichannel:
|
||
|
# Make 2D multichannel image 3D with depth = 1
|
||
|
image = image[np.newaxis, ...]
|
||
|
is_2d = True
|
||
|
elif image.ndim == 3 and not multichannel:
|
||
|
# Add channel as single last dimension
|
||
|
image = image[..., np.newaxis]
|
||
|
|
||
|
if multichannel and (convert2lab or convert2lab is None):
|
||
|
if image.shape[-1] != 3 and convert2lab:
|
||
|
raise ValueError("Lab colorspace conversion requires a RGB image.")
|
||
|
elif image.shape[-1] == 3:
|
||
|
image = rgb2lab(image)
|
||
|
|
||
|
if start_label is None:
|
||
|
if use_mask:
|
||
|
start_label = 1
|
||
|
else:
|
||
|
warnings.warn("skimage.measure.label's indexing starts from 0. " +
|
||
|
"In future version it will start from 1. " +
|
||
|
"To disable this warning, explicitely " +
|
||
|
"set the `start_label` parameter to 1.",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
start_label = 0
|
||
|
|
||
|
if start_label not in [0, 1]:
|
||
|
raise ValueError("start_label should be 0 or 1.")
|
||
|
|
||
|
# initialize cluster centroids for desired number of segments
|
||
|
update_centroids = False
|
||
|
if use_mask:
|
||
|
mask = np.ascontiguousarray(mask, dtype=bool).view('uint8')
|
||
|
if mask.ndim == 2:
|
||
|
mask = np.ascontiguousarray(mask[np.newaxis, ...])
|
||
|
if mask.shape != image.shape[:3]:
|
||
|
raise ValueError("image and mask should have the same shape.")
|
||
|
centroids, steps = _get_mask_centroids(mask, n_segments, multichannel)
|
||
|
update_centroids = True
|
||
|
else:
|
||
|
centroids, steps = _get_grid_centroids(image, n_segments)
|
||
|
|
||
|
if spacing is None:
|
||
|
spacing = np.ones(3, dtype=dtype)
|
||
|
elif isinstance(spacing, (list, tuple)):
|
||
|
spacing = np.ascontiguousarray(spacing, dtype=dtype)
|
||
|
|
||
|
if not isinstance(sigma, Iterable):
|
||
|
sigma = np.array([sigma, sigma, sigma], dtype=dtype)
|
||
|
sigma /= spacing.astype(dtype)
|
||
|
elif isinstance(sigma, (list, tuple)):
|
||
|
sigma = np.array(sigma, dtype=dtype)
|
||
|
if (sigma > 0).any():
|
||
|
# add zero smoothing for multichannel dimension
|
||
|
sigma = list(sigma) + [0]
|
||
|
image = ndi.gaussian_filter(image, sigma)
|
||
|
|
||
|
n_centroids = centroids.shape[0]
|
||
|
segments = np.ascontiguousarray(np.concatenate(
|
||
|
[centroids, np.zeros((n_centroids, image.shape[3]))],
|
||
|
axis=-1), dtype=dtype)
|
||
|
|
||
|
# Scaling of ratio in the same way as in the SLIC paper so the
|
||
|
# values have the same meaning
|
||
|
step = max(steps)
|
||
|
ratio = 1.0 / compactness
|
||
|
|
||
|
image = np.ascontiguousarray(image * ratio, dtype=dtype)
|
||
|
|
||
|
if update_centroids:
|
||
|
# Step 2 of the algorithm [3]_
|
||
|
_slic_cython(image, mask, segments, step, max_iter, spacing,
|
||
|
slic_zero, ignore_color=True,
|
||
|
start_label=start_label)
|
||
|
|
||
|
labels = _slic_cython(image, mask, segments, step, max_iter,
|
||
|
spacing, slic_zero, ignore_color=False,
|
||
|
start_label=start_label)
|
||
|
|
||
|
if enforce_connectivity:
|
||
|
if use_mask:
|
||
|
segment_size = mask.sum() / n_centroids
|
||
|
else:
|
||
|
segment_size = np.prod(image.shape[:3]) / n_centroids
|
||
|
min_size = int(min_size_factor * segment_size)
|
||
|
max_size = int(max_size_factor * segment_size)
|
||
|
labels = _enforce_label_connectivity_cython(
|
||
|
labels, min_size, max_size, start_label=start_label)
|
||
|
|
||
|
if is_2d:
|
||
|
labels = labels[0]
|
||
|
|
||
|
return labels
|