forked from 170010011/fr
169 lines
5.2 KiB
Python
169 lines
5.2 KiB
Python
|
import numpy as np
|
||
|
from scipy import signal
|
||
|
|
||
|
|
||
|
def approximate_polygon(coords, tolerance):
|
||
|
"""Approximate a polygonal chain with the specified tolerance.
|
||
|
|
||
|
It is based on the Douglas-Peucker algorithm.
|
||
|
|
||
|
Note that the approximated polygon is always within the convex hull of the
|
||
|
original polygon.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Coordinate array.
|
||
|
tolerance : float
|
||
|
Maximum distance from original points of polygon to approximated
|
||
|
polygonal chain. If tolerance is 0, the original coordinate array
|
||
|
is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (M, 2) array
|
||
|
Approximated polygonal chain where M <= N.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
|
||
|
"""
|
||
|
if tolerance <= 0:
|
||
|
return coords
|
||
|
|
||
|
chain = np.zeros(coords.shape[0], 'bool')
|
||
|
# pre-allocate distance array for all points
|
||
|
dists = np.zeros(coords.shape[0])
|
||
|
chain[0] = True
|
||
|
chain[-1] = True
|
||
|
pos_stack = [(0, chain.shape[0] - 1)]
|
||
|
end_of_chain = False
|
||
|
|
||
|
while not end_of_chain:
|
||
|
start, end = pos_stack.pop()
|
||
|
# determine properties of current line segment
|
||
|
r0, c0 = coords[start, :]
|
||
|
r1, c1 = coords[end, :]
|
||
|
dr = r1 - r0
|
||
|
dc = c1 - c0
|
||
|
segment_angle = - np.arctan2(dr, dc)
|
||
|
segment_dist = c0 * np.sin(segment_angle) + r0 * np.cos(segment_angle)
|
||
|
|
||
|
# select points in-between line segment
|
||
|
segment_coords = coords[start + 1:end, :]
|
||
|
segment_dists = dists[start + 1:end]
|
||
|
|
||
|
# check whether to take perpendicular or euclidean distance with
|
||
|
# inner product of vectors
|
||
|
|
||
|
# vectors from points -> start and end
|
||
|
dr0 = segment_coords[:, 0] - r0
|
||
|
dc0 = segment_coords[:, 1] - c0
|
||
|
dr1 = segment_coords[:, 0] - r1
|
||
|
dc1 = segment_coords[:, 1] - c1
|
||
|
# vectors points -> start and end projected on start -> end vector
|
||
|
projected_lengths0 = dr0 * dr + dc0 * dc
|
||
|
projected_lengths1 = - dr1 * dr - dc1 * dc
|
||
|
perp = np.logical_and(projected_lengths0 > 0,
|
||
|
projected_lengths1 > 0)
|
||
|
eucl = np.logical_not(perp)
|
||
|
segment_dists[perp] = np.abs(
|
||
|
segment_coords[perp, 0] * np.cos(segment_angle)
|
||
|
+ segment_coords[perp, 1] * np.sin(segment_angle)
|
||
|
- segment_dist
|
||
|
)
|
||
|
segment_dists[eucl] = np.minimum(
|
||
|
# distance to start point
|
||
|
np.sqrt(dc0[eucl] ** 2 + dr0[eucl] ** 2),
|
||
|
# distance to end point
|
||
|
np.sqrt(dc1[eucl] ** 2 + dr1[eucl] ** 2)
|
||
|
)
|
||
|
|
||
|
if np.any(segment_dists > tolerance):
|
||
|
# select point with maximum distance to line
|
||
|
new_end = start + np.argmax(segment_dists) + 1
|
||
|
pos_stack.append((new_end, end))
|
||
|
pos_stack.append((start, new_end))
|
||
|
chain[new_end] = True
|
||
|
|
||
|
if len(pos_stack) == 0:
|
||
|
end_of_chain = True
|
||
|
|
||
|
return coords[chain, :]
|
||
|
|
||
|
|
||
|
# B-Spline subdivision
|
||
|
_SUBDIVISION_MASKS = {
|
||
|
# degree: (mask_even, mask_odd)
|
||
|
# extracted from (degree + 2)th row of Pascal's triangle
|
||
|
1: ([1, 1], [1, 1]),
|
||
|
2: ([3, 1], [1, 3]),
|
||
|
3: ([1, 6, 1], [0, 4, 4]),
|
||
|
4: ([5, 10, 1], [1, 10, 5]),
|
||
|
5: ([1, 15, 15, 1], [0, 6, 20, 6]),
|
||
|
6: ([7, 35, 21, 1], [1, 21, 35, 7]),
|
||
|
7: ([1, 28, 70, 28, 1], [0, 8, 56, 56, 8]),
|
||
|
}
|
||
|
|
||
|
|
||
|
def subdivide_polygon(coords, degree=2, preserve_ends=False):
|
||
|
"""Subdivision of polygonal curves using B-Splines.
|
||
|
|
||
|
Note that the resulting curve is always within the convex hull of the
|
||
|
original polygon. Circular polygons stay closed after subdivision.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : (N, 2) array
|
||
|
Coordinate array.
|
||
|
degree : {1, 2, 3, 4, 5, 6, 7}, optional
|
||
|
Degree of B-Spline. Default is 2.
|
||
|
preserve_ends : bool, optional
|
||
|
Preserve first and last coordinate of non-circular polygon. Default is
|
||
|
False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : (M, 2) array
|
||
|
Subdivided coordinate array.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] http://mrl.nyu.edu/publications/subdiv-course2000/coursenotes00.pdf
|
||
|
"""
|
||
|
if degree not in _SUBDIVISION_MASKS:
|
||
|
raise ValueError("Invalid B-Spline degree. Only degree 1 - 7 is "
|
||
|
"supported.")
|
||
|
|
||
|
circular = np.all(coords[0, :] == coords[-1, :])
|
||
|
|
||
|
method = 'valid'
|
||
|
if circular:
|
||
|
# remove last coordinate because of wrapping
|
||
|
coords = coords[:-1, :]
|
||
|
# circular convolution by wrapping boundaries
|
||
|
method = 'same'
|
||
|
|
||
|
mask_even, mask_odd = _SUBDIVISION_MASKS[degree]
|
||
|
# divide by total weight
|
||
|
mask_even = np.array(mask_even, float) / (2 ** degree)
|
||
|
mask_odd = np.array(mask_odd, float) / (2 ** degree)
|
||
|
|
||
|
even = signal.convolve2d(coords.T, np.atleast_2d(mask_even), mode=method,
|
||
|
boundary='wrap')
|
||
|
odd = signal.convolve2d(coords.T, np.atleast_2d(mask_odd), mode=method,
|
||
|
boundary='wrap')
|
||
|
|
||
|
out = np.zeros((even.shape[1] + odd.shape[1], 2))
|
||
|
out[1::2] = even.T
|
||
|
out[::2] = odd.T
|
||
|
|
||
|
if circular:
|
||
|
# close polygon
|
||
|
out = np.vstack([out, out[0, :]])
|
||
|
|
||
|
if preserve_ends and not circular:
|
||
|
out = np.vstack([coords[0, :], out, coords[-1, :]])
|
||
|
|
||
|
return out
|