fr/fr_env/lib/python3.8/site-packages/skimage/graph/mcp.py

90 lines
3.1 KiB
Python
Raw Normal View History

2021-02-17 12:26:31 +05:30
from ._mcp import MCP, MCP_Geometric, MCP_Connect, MCP_Flexible
def route_through_array(array, start, end, fully_connected=True,
geometric=True):
"""Simple example of how to use the MCP and MCP_Geometric classes.
See the MCP and MCP_Geometric class documentation for explanation of the
path-finding algorithm.
Parameters
----------
array : ndarray
Array of costs.
start : iterable
n-d index into `array` defining the starting point
end : iterable
n-d index into `array` defining the end point
fully_connected : bool (optional)
If True, diagonal moves are permitted, if False, only axial moves.
geometric : bool (optional)
If True, the MCP_Geometric class is used to calculate costs, if False,
the MCP base class is used. See the class documentation for
an explanation of the differences between MCP and MCP_Geometric.
Returns
-------
path : list
List of n-d index tuples defining the path from `start` to `end`.
cost : float
Cost of the path. If `geometric` is False, the cost of the path is
the sum of the values of `array` along the path. If `geometric` is
True, a finer computation is made (see the documentation of the
MCP_Geometric class).
See Also
--------
MCP, MCP_Geometric
Examples
--------
>>> import numpy as np
>>> from skimage.graph import route_through_array
>>>
>>> image = np.array([[1, 3], [10, 12]])
>>> image
array([[ 1, 3],
[10, 12]])
>>> # Forbid diagonal steps
>>> route_through_array(image, [0, 0], [1, 1], fully_connected=False)
([(0, 0), (0, 1), (1, 1)], 9.5)
>>> # Now allow diagonal steps: the path goes directly from start to end
>>> route_through_array(image, [0, 0], [1, 1])
([(0, 0), (1, 1)], 9.19238815542512)
>>> # Cost is the sum of array values along the path (16 = 1 + 3 + 12)
>>> route_through_array(image, [0, 0], [1, 1], fully_connected=False,
... geometric=False)
([(0, 0), (0, 1), (1, 1)], 16.0)
>>> # Larger array where we display the path that is selected
>>> image = np.arange((36)).reshape((6, 6))
>>> image
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])
>>> # Find the path with lowest cost
>>> indices, weight = route_through_array(image, (0, 0), (5, 5))
>>> indices = np.stack(indices, axis=-1)
>>> path = np.zeros_like(image)
>>> path[indices[0], indices[1]] = 1
>>> path
array([[1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]])
"""
start, end = tuple(start), tuple(end)
if geometric:
mcp_class = MCP_Geometric
else:
mcp_class = MCP
m = mcp_class(array, fully_connected=fully_connected)
costs, traceback_array = m.find_costs([start], [end])
return m.traceback(end), costs[end]