fr/fr_env/lib/python3.8/site-packages/skimage/feature/peak.py

423 lines
15 KiB
Python
Raw Normal View History

2021-02-17 12:26:31 +05:30
from warnings import warn
import numpy as np
import scipy.ndimage as ndi
from .. import measure
from .._shared.utils import remove_arg
from .._shared.coord import ensure_spacing
def _get_high_intensity_peaks(image, mask, num_peaks, min_distance, p_norm):
"""
Return the highest intensity peak coordinates.
"""
# get coordinates of peaks
coord = np.nonzero(mask)
intensities = image[coord]
# Highest peak first
idx_maxsort = np.argsort(-intensities)
coord = np.transpose(coord)[idx_maxsort]
coord = ensure_spacing(coord, spacing=min_distance, p_norm=p_norm)
if len(coord) > num_peaks:
coord = coord[:num_peaks]
return coord
def _get_peak_mask(image, footprint, threshold, mask=None):
"""
Return the mask containing all peak candidates above thresholds.
"""
if footprint.size == 1 or image.size == 1:
return image > threshold
image_max = ndi.maximum_filter(image, footprint=footprint,
mode='constant')
out = image == image_max
# no peak for a trivial image
image_is_trivial = np.all(out) if mask is None else np.all(out[mask])
if image_is_trivial:
out[:] = False
if mask is not None:
# isolated pixels in masked area are returned as peaks
isolated_px = np.logical_xor(mask, ndi.binary_opening(mask))
out[isolated_px] = True
out &= image > threshold
return out
def _exclude_border(label, border_width):
"""Set label border values to 0.
"""
# zero out label borders
for i, width in enumerate(border_width):
if width == 0:
continue
label[(slice(None),) * i + (slice(None, width),)] = 0
label[(slice(None),) * i + (slice(-width, None),)] = 0
return label
def _get_threshold(image, threshold_abs, threshold_rel):
"""Return the threshold value according to an absolute and a relative
value.
"""
threshold = threshold_abs if threshold_abs is not None else image.min()
if threshold_rel is not None:
threshold = max(threshold, threshold_rel * image.max())
return threshold
def _get_excluded_border_width(image, min_distance, exclude_border):
"""Return border_width values relative to a min_distance if requested.
"""
if isinstance(exclude_border, bool):
border_width = (min_distance if exclude_border else 0,) * image.ndim
elif isinstance(exclude_border, int):
if exclude_border < 0:
raise ValueError("`exclude_border` cannot be a negative value")
border_width = (exclude_border,) * image.ndim
elif isinstance(exclude_border, tuple):
if len(exclude_border) != image.ndim:
raise ValueError(
"`exclude_border` should have the same length as the "
"dimensionality of the image.")
for exclude in exclude_border:
if not isinstance(exclude, int):
raise ValueError(
"`exclude_border`, when expressed as a tuple, must only "
"contain ints."
)
if exclude < 0:
raise ValueError(
"`exclude_border` can not be a negative value")
border_width = exclude_border
else:
raise TypeError(
"`exclude_border` must be bool, int, or tuple with the same "
"length as the dimensionality of the image.")
return border_width
@remove_arg("indices", changed_version="0.20")
def peak_local_max(image, min_distance=1, threshold_abs=None,
threshold_rel=None, exclude_border=True, indices=True,
num_peaks=np.inf, footprint=None, labels=None,
num_peaks_per_label=np.inf, p_norm=np.inf):
"""Find peaks in an image as coordinate list or boolean mask.
Peaks are the local maxima in a region of `2 * min_distance + 1`
(i.e. peaks are separated by at least `min_distance`).
If both `threshold_abs` and `threshold_rel` are provided, the maximum
of the two is chosen as the minimum intensity threshold of peaks.
.. versionchanged:: 0.18
Prior to version 0.18, peaks of the same height within a radius of
`min_distance` were all returned, but this could cause unexpected
behaviour. From 0.18 onwards, an arbitrary peak within the region is
returned. See issue gh-2592.
Parameters
----------
image : ndarray
Input image.
min_distance : int, optional
The minimal allowed distance separating peaks. To find the
maximum number of peaks, use `min_distance=1`.
threshold_abs : float, optional
Minimum intensity of peaks. By default, the absolute threshold is
the minimum intensity of the image.
threshold_rel : float, optional
Minimum intensity of peaks, calculated as `max(image) * threshold_rel`.
exclude_border : int, tuple of ints, or bool, optional
If positive integer, `exclude_border` excludes peaks from within
`exclude_border`-pixels of the border of the image.
If tuple of non-negative ints, the length of the tuple must match the
input array's dimensionality. Each element of the tuple will exclude
peaks from within `exclude_border`-pixels of the border of the image
along that dimension.
If True, takes the `min_distance` parameter as value.
If zero or False, peaks are identified regardless of their distance
from the border.
indices : bool, optional
If True, the output will be an array representing peak
coordinates. The coordinates are sorted according to peaks
values (Larger first). If False, the output will be a boolean
array shaped as `image.shape` with peaks present at True
elements. ``indices`` is deprecated and will be removed in
version 0.20. Default behavior will be to always return peak
coordinates. You can obtain a mask as shown in the example
below.
num_peaks : int, optional
Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
return `num_peaks` peaks based on highest peak intensity.
footprint : ndarray of bools, optional
If provided, `footprint == 1` represents the local region within which
to search for peaks at every point in `image`.
labels : ndarray of ints, optional
If provided, each unique region `labels == value` represents a unique
region to search for peaks. Zero is reserved for background.
num_peaks_per_label : int, optional
Maximum number of peaks for each label.
p_norm : float
Which Minkowski p-norm to use. Should be in the range [1, inf].
A finite large p may cause a ValueError if overflow can occur.
``inf`` corresponds to the Chebyshev distance and 2 to the
Euclidean distance.
Returns
-------
output : ndarray or ndarray of bools
* If `indices = True` : (row, column, ...) coordinates of peaks.
* If `indices = False` : Boolean array shaped like `image`, with peaks
represented by True values.
Notes
-----
The peak local maximum function returns the coordinates of local peaks
(maxima) in an image. Internally, a maximum filter is used for finding local
maxima. This operation dilates the original image. After comparison of the
dilated and original image, this function returns the coordinates or a mask
of the peaks where the dilated image equals the original image.
See also
--------
skimage.feature.corner_peaks
Examples
--------
>>> img1 = np.zeros((7, 7))
>>> img1[3, 4] = 1
>>> img1[3, 2] = 1.5
>>> img1
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 1.5, 0. , 1. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. ]])
>>> peak_local_max(img1, min_distance=1)
array([[3, 2],
[3, 4]])
>>> peak_local_max(img1, min_distance=2)
array([[3, 2]])
>>> img2 = np.zeros((20, 20, 20))
>>> img2[10, 10, 10] = 1
>>> img2[15, 15, 15] = 1
>>> peak_idx = peak_local_max(img2, exclude_border=0)
>>> peak_idx
array([[10, 10, 10],
[15, 15, 15]])
>>> peak_mask = np.zeros_like(img2, dtype=bool)
>>> peak_mask[tuple(peak_idx.T)] = True
>>> np.argwhere(peak_mask)
array([[10, 10, 10],
[15, 15, 15]])
"""
if (footprint is None or footprint.size == 1) and min_distance < 1:
warn("When min_distance < 1, peak_local_max acts as finding "
"image > max(threshold_abs, threshold_rel * max(image)).",
RuntimeWarning, stacklevel=2)
border_width = _get_excluded_border_width(image, min_distance,
exclude_border)
threshold = _get_threshold(image, threshold_abs, threshold_rel)
if footprint is None:
size = 2 * min_distance + 1
footprint = np.ones((size, ) * image.ndim, dtype=bool)
else:
footprint = np.asarray(footprint)
if labels is None:
# Non maximum filter
mask = _get_peak_mask(image, footprint, threshold)
mask = _exclude_border(mask, border_width)
# Select highest intensities (num_peaks)
coordinates = _get_high_intensity_peaks(image, mask,
num_peaks,
min_distance, p_norm)
else:
_labels = _exclude_border(labels.astype(int, casting="safe"),
border_width)
if np.issubdtype(image.dtype, np.floating):
bg_val = np.finfo(image.dtype).min
else:
bg_val = np.iinfo(image.dtype).min
# For each label, extract a smaller image enclosing the object of
# interest, identify num_peaks_per_label peaks
labels_peak_coord = []
for label_idx, roi in enumerate(ndi.find_objects(_labels)):
if roi is None:
continue
# Get roi mask
label_mask = labels[roi] == label_idx + 1
# Extract image roi
img_object = image[roi]
# Ensure masked values don't affect roi's local peaks
img_object[np.logical_not(label_mask)] = bg_val
mask = _get_peak_mask(img_object, footprint, threshold, label_mask)
coordinates = _get_high_intensity_peaks(img_object, mask,
num_peaks_per_label,
min_distance,
p_norm)
# transform coordinates in global image indices space
for idx, s in enumerate(roi):
coordinates[:, idx] += s.start
labels_peak_coord.append(coordinates)
if labels_peak_coord:
coordinates = np.vstack(labels_peak_coord)
else:
coordinates = np.empty((0, 2), dtype=int)
if len(coordinates) > num_peaks:
out = np.zeros_like(image, dtype=bool)
out[tuple(coordinates.T)] = True
coordinates = _get_high_intensity_peaks(image, out,
num_peaks,
min_distance,
p_norm)
if indices:
return coordinates
else:
out = np.zeros_like(image, dtype=bool)
out[tuple(coordinates.T)] = True
return out
def _prominent_peaks(image, min_xdistance=1, min_ydistance=1,
threshold=None, num_peaks=np.inf):
"""Return peaks with non-maximum suppression.
Identifies most prominent features separated by certain distances.
Non-maximum suppression with different sizes is applied separately
in the first and second dimension of the image to identify peaks.
Parameters
----------
image : (M, N) ndarray
Input image.
min_xdistance : int
Minimum distance separating features in the x dimension.
min_ydistance : int
Minimum distance separating features in the y dimension.
threshold : float
Minimum intensity of peaks. Default is `0.5 * max(image)`.
num_peaks : int
Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
return `num_peaks` coordinates based on peak intensity.
Returns
-------
intensity, xcoords, ycoords : tuple of array
Peak intensity values, x and y indices.
"""
img = image.copy()
rows, cols = img.shape
if threshold is None:
threshold = 0.5 * np.max(img)
ycoords_size = 2 * min_ydistance + 1
xcoords_size = 2 * min_xdistance + 1
img_max = ndi.maximum_filter1d(img, size=ycoords_size, axis=0,
mode='constant', cval=0)
img_max = ndi.maximum_filter1d(img_max, size=xcoords_size, axis=1,
mode='constant', cval=0)
mask = (img == img_max)
img *= mask
img_t = img > threshold
label_img = measure.label(img_t)
props = measure.regionprops(label_img, img_max)
# Sort the list of peaks by intensity, not left-right, so larger peaks
# in Hough space cannot be arbitrarily suppressed by smaller neighbors
props = sorted(props, key=lambda x: x.max_intensity)[::-1]
coords = np.array([np.round(p.centroid) for p in props], dtype=int)
img_peaks = []
ycoords_peaks = []
xcoords_peaks = []
# relative coordinate grid for local neighbourhood suppression
ycoords_ext, xcoords_ext = np.mgrid[-min_ydistance:min_ydistance + 1,
-min_xdistance:min_xdistance + 1]
for ycoords_idx, xcoords_idx in coords:
accum = img_max[ycoords_idx, xcoords_idx]
if accum > threshold:
# absolute coordinate grid for local neighbourhood suppression
ycoords_nh = ycoords_idx + ycoords_ext
xcoords_nh = xcoords_idx + xcoords_ext
# no reflection for distance neighbourhood
ycoords_in = np.logical_and(ycoords_nh > 0, ycoords_nh < rows)
ycoords_nh = ycoords_nh[ycoords_in]
xcoords_nh = xcoords_nh[ycoords_in]
# reflect xcoords and assume xcoords are continuous,
# e.g. for angles:
# (..., 88, 89, -90, -89, ..., 89, -90, -89, ...)
xcoords_low = xcoords_nh < 0
ycoords_nh[xcoords_low] = rows - ycoords_nh[xcoords_low]
xcoords_nh[xcoords_low] += cols
xcoords_high = xcoords_nh >= cols
ycoords_nh[xcoords_high] = rows - ycoords_nh[xcoords_high]
xcoords_nh[xcoords_high] -= cols
# suppress neighbourhood
img_max[ycoords_nh, xcoords_nh] = 0
# add current feature to peaks
img_peaks.append(accum)
ycoords_peaks.append(ycoords_idx)
xcoords_peaks.append(xcoords_idx)
img_peaks = np.array(img_peaks)
ycoords_peaks = np.array(ycoords_peaks)
xcoords_peaks = np.array(xcoords_peaks)
if num_peaks < len(img_peaks):
idx_maxsort = np.argsort(img_peaks)[::-1][:num_peaks]
img_peaks = img_peaks[idx_maxsort]
ycoords_peaks = ycoords_peaks[idx_maxsort]
xcoords_peaks = xcoords_peaks[idx_maxsort]
return img_peaks, xcoords_peaks, ycoords_peaks