forked from 170010011/fr
109 lines
3.6 KiB
Python
109 lines
3.6 KiB
Python
|
import numpy as np
|
||
|
|
||
|
|
||
|
def _round_safe(coords):
|
||
|
"""Round coords while ensuring successive values are less than 1 apart.
|
||
|
|
||
|
When rounding coordinates for `line_nd`, we want coordinates that are less
|
||
|
than 1 apart (always the case, by design) to remain less than one apart.
|
||
|
However, NumPy rounds values to the nearest *even* integer, so:
|
||
|
|
||
|
>>> np.round([0.5, 1.5, 2.5, 3.5, 4.5])
|
||
|
array([0., 2., 2., 4., 4.])
|
||
|
|
||
|
So, for our application, we detect whether the above case occurs, and use
|
||
|
``np.floor`` if so. It is sufficient to detect that the first coordinate
|
||
|
falls on 0.5 and that the second coordinate is 1.0 apart, since we assume
|
||
|
by construction that the inter-point distance is less than or equal to 1
|
||
|
and that all successive points are equidistant.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
coords : 1D array of float
|
||
|
The coordinates array. We assume that all successive values are
|
||
|
equidistant (``np.all(np.diff(coords) = coords[1] - coords[0])``)
|
||
|
and that this distance is no more than 1
|
||
|
(``np.abs(coords[1] - coords[0]) <= 1``).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rounded : 1D array of int
|
||
|
The array correctly rounded for an indexing operation, such that no
|
||
|
successive indices will be more than 1 apart.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> coords0 = np.array([0.5, 1.25, 2., 2.75, 3.5])
|
||
|
>>> _round_safe(coords0)
|
||
|
array([0, 1, 2, 3, 4])
|
||
|
>>> coords1 = np.arange(0.5, 8, 1)
|
||
|
>>> coords1
|
||
|
array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5])
|
||
|
>>> _round_safe(coords1)
|
||
|
array([0, 1, 2, 3, 4, 5, 6, 7])
|
||
|
"""
|
||
|
if (len(coords) > 1
|
||
|
and coords[0] % 1 == 0.5
|
||
|
and coords[1] - coords[0] == 1):
|
||
|
_round_function = np.floor
|
||
|
else:
|
||
|
_round_function = np.round
|
||
|
return _round_function(coords).astype(int)
|
||
|
|
||
|
|
||
|
def line_nd(start, stop, *, endpoint=False, integer=True):
|
||
|
"""Draw a single-pixel thick line in n dimensions.
|
||
|
|
||
|
The line produced will be ndim-connected. That is, two subsequent
|
||
|
pixels in the line will be either direct or diagonal neighbours in
|
||
|
n dimensions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : array-like, shape (N,)
|
||
|
The start coordinates of the line.
|
||
|
stop : array-like, shape (N,)
|
||
|
The end coordinates of the line.
|
||
|
endpoint : bool, optional
|
||
|
Whether to include the endpoint in the returned line. Defaults
|
||
|
to False, which allows for easy drawing of multi-point paths.
|
||
|
integer : bool, optional
|
||
|
Whether to round the coordinates to integer. If True (default),
|
||
|
the returned coordinates can be used to directly index into an
|
||
|
array. `False` could be used for e.g. vector drawing.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coords : tuple of arrays
|
||
|
The coordinates of points on the line.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> lin = line_nd((1, 1), (5, 2.5), endpoint=False)
|
||
|
>>> lin
|
||
|
(array([1, 2, 3, 4]), array([1, 1, 2, 2]))
|
||
|
>>> im = np.zeros((6, 5), dtype=int)
|
||
|
>>> im[lin] = 1
|
||
|
>>> im
|
||
|
array([[0, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0],
|
||
|
[0, 0, 1, 0, 0],
|
||
|
[0, 0, 1, 0, 0],
|
||
|
[0, 0, 0, 0, 0]])
|
||
|
>>> line_nd([2, 1, 1], [5, 5, 2.5], endpoint=True)
|
||
|
(array([2, 3, 4, 4, 5]), array([1, 2, 3, 4, 5]), array([1, 1, 2, 2, 2]))
|
||
|
"""
|
||
|
start = np.asarray(start)
|
||
|
stop = np.asarray(stop)
|
||
|
npoints = int(np.ceil(np.max(np.abs(stop - start))))
|
||
|
if endpoint:
|
||
|
npoints += 1
|
||
|
coords = []
|
||
|
for dim in range(len(start)):
|
||
|
dimcoords = np.linspace(start[dim], stop[dim], npoints, endpoint)
|
||
|
if integer:
|
||
|
dimcoords = _round_safe(dimcoords).astype(int)
|
||
|
coords.append(dimcoords)
|
||
|
return tuple(coords)
|