forked from 170010011/fr
39 lines
1.1 KiB
Python
39 lines
1.1 KiB
Python
|
#!/usr/bin/env python
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
from numpy.testing import assert_almost_equal, assert_allclose
|
||
|
|
||
|
import pywt
|
||
|
|
||
|
|
||
|
def test_centrfreq():
|
||
|
# db1 is Haar function, frequency=1
|
||
|
w = pywt.Wavelet('db1')
|
||
|
expected = 1
|
||
|
result = pywt.central_frequency(w, precision=12)
|
||
|
assert_almost_equal(result, expected, decimal=3)
|
||
|
# db2, frequency=2/3
|
||
|
w = pywt.Wavelet('db2')
|
||
|
expected = 2/3.
|
||
|
result = pywt.central_frequency(w, precision=12)
|
||
|
assert_almost_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_scal2frq_scale():
|
||
|
scale = 2
|
||
|
w = pywt.Wavelet('db1')
|
||
|
expected = 1. / scale
|
||
|
result = pywt.scale2frequency(w, scale, precision=12)
|
||
|
assert_almost_equal(result, expected, decimal=3)
|
||
|
|
||
|
|
||
|
def test_intwave_orthogonal():
|
||
|
w = pywt.Wavelet('db1')
|
||
|
int_psi, x = pywt.integrate_wavelet(w, precision=12)
|
||
|
ix = x < 0.5
|
||
|
# For x < 0.5, the integral is equal to x
|
||
|
assert_allclose(int_psi[ix], x[ix])
|
||
|
# For x > 0.5, the integral is equal to (1 - x)
|
||
|
# Ignore last point here, there x > 1 and something goes wrong
|
||
|
assert_allclose(int_psi[~ix][:-1], 1 - x[~ix][:-1], atol=1e-10)
|