fr/fr_env/lib/python3.8/site-packages/pandas/io/parquet.py

462 lines
16 KiB
Python
Raw Normal View History

2021-03-02 18:34:59 +05:30
""" parquet compat """
from distutils.version import LooseVersion
import io
import os
from typing import Any, AnyStr, Dict, List, Optional, Tuple
from warnings import catch_warnings
from pandas._typing import FilePathOrBuffer, StorageOptions
from pandas.compat._optional import import_optional_dependency
from pandas.errors import AbstractMethodError
from pandas.util._decorators import doc
from pandas import DataFrame, MultiIndex, get_option
from pandas.core import generic
from pandas.io.common import IOHandles, get_handle, is_fsspec_url, stringify_path
def get_engine(engine: str) -> "BaseImpl":
""" return our implementation """
if engine == "auto":
engine = get_option("io.parquet.engine")
if engine == "auto":
# try engines in this order
engine_classes = [PyArrowImpl, FastParquetImpl]
error_msgs = ""
for engine_class in engine_classes:
try:
return engine_class()
except ImportError as err:
error_msgs += "\n - " + str(err)
raise ImportError(
"Unable to find a usable engine; "
"tried using: 'pyarrow', 'fastparquet'.\n"
"A suitable version of "
"pyarrow or fastparquet is required for parquet "
"support.\n"
"Trying to import the above resulted in these errors:"
f"{error_msgs}"
)
if engine == "pyarrow":
return PyArrowImpl()
elif engine == "fastparquet":
return FastParquetImpl()
raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
def _get_path_or_handle(
path: FilePathOrBuffer,
fs: Any,
storage_options: StorageOptions = None,
mode: str = "rb",
is_dir: bool = False,
) -> Tuple[FilePathOrBuffer, Optional[IOHandles], Any]:
"""File handling for PyArrow."""
path_or_handle = stringify_path(path)
if is_fsspec_url(path_or_handle) and fs is None:
fsspec = import_optional_dependency("fsspec")
fs, path_or_handle = fsspec.core.url_to_fs(
path_or_handle, **(storage_options or {})
)
elif storage_options:
raise ValueError("storage_options passed with buffer or non-fsspec filepath")
handles = None
if (
not fs
and not is_dir
and isinstance(path_or_handle, str)
and not os.path.isdir(path_or_handle)
):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(path_or_handle, mode, is_text=False)
fs = None
path_or_handle = handles.handle
return path_or_handle, handles, fs
class BaseImpl:
@staticmethod
def validate_dataframe(df: DataFrame):
if not isinstance(df, DataFrame):
raise ValueError("to_parquet only supports IO with DataFrames")
# must have value column names for all index levels (strings only)
if isinstance(df.columns, MultiIndex):
if not all(
x.inferred_type in {"string", "empty"} for x in df.columns.levels
):
raise ValueError(
"""
parquet must have string column names for all values in
each level of the MultiIndex
"""
)
else:
if df.columns.inferred_type not in {"string", "empty"}:
raise ValueError("parquet must have string column names")
# index level names must be strings
valid_names = all(
isinstance(name, str) for name in df.index.names if name is not None
)
if not valid_names:
raise ValueError("Index level names must be strings")
def write(self, df: DataFrame, path, compression, **kwargs):
raise AbstractMethodError(self)
def read(self, path, columns=None, **kwargs):
raise AbstractMethodError(self)
class PyArrowImpl(BaseImpl):
def __init__(self):
import_optional_dependency(
"pyarrow", extra="pyarrow is required for parquet support."
)
import pyarrow.parquet
# import utils to register the pyarrow extension types
import pandas.core.arrays._arrow_utils # noqa
self.api = pyarrow
def write(
self,
df: DataFrame,
path: FilePathOrBuffer[AnyStr],
compression: Optional[str] = "snappy",
index: Optional[bool] = None,
storage_options: StorageOptions = None,
partition_cols: Optional[List[str]] = None,
**kwargs,
):
self.validate_dataframe(df)
from_pandas_kwargs: Dict[str, Any] = {"schema": kwargs.pop("schema", None)}
if index is not None:
from_pandas_kwargs["preserve_index"] = index
table = self.api.Table.from_pandas(df, **from_pandas_kwargs)
path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle(
path,
kwargs.pop("filesystem", None),
storage_options=storage_options,
mode="wb",
is_dir=partition_cols is not None,
)
try:
if partition_cols is not None:
# writes to multiple files under the given path
self.api.parquet.write_to_dataset(
table,
path_or_handle,
compression=compression,
partition_cols=partition_cols,
**kwargs,
)
else:
# write to single output file
self.api.parquet.write_table(
table, path_or_handle, compression=compression, **kwargs
)
finally:
if handles is not None:
handles.close()
def read(
self,
path,
columns=None,
use_nullable_dtypes=False,
storage_options: StorageOptions = None,
**kwargs,
):
kwargs["use_pandas_metadata"] = True
to_pandas_kwargs = {}
if use_nullable_dtypes:
if LooseVersion(self.api.__version__) >= "0.16":
import pandas as pd
mapping = {
self.api.int8(): pd.Int8Dtype(),
self.api.int16(): pd.Int16Dtype(),
self.api.int32(): pd.Int32Dtype(),
self.api.int64(): pd.Int64Dtype(),
self.api.uint8(): pd.UInt8Dtype(),
self.api.uint16(): pd.UInt16Dtype(),
self.api.uint32(): pd.UInt32Dtype(),
self.api.uint64(): pd.UInt64Dtype(),
self.api.bool_(): pd.BooleanDtype(),
self.api.string(): pd.StringDtype(),
}
to_pandas_kwargs["types_mapper"] = mapping.get
else:
raise ValueError(
"'use_nullable_dtypes=True' is only supported for pyarrow >= 0.16 "
f"({self.api.__version__} is installed"
)
path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle(
path,
kwargs.pop("filesystem", None),
storage_options=storage_options,
mode="rb",
)
try:
return self.api.parquet.read_table(
path_or_handle, columns=columns, **kwargs
).to_pandas(**to_pandas_kwargs)
finally:
if handles is not None:
handles.close()
class FastParquetImpl(BaseImpl):
def __init__(self):
# since pandas is a dependency of fastparquet
# we need to import on first use
fastparquet = import_optional_dependency(
"fastparquet", extra="fastparquet is required for parquet support."
)
self.api = fastparquet
def write(
self,
df: DataFrame,
path,
compression="snappy",
index=None,
partition_cols=None,
storage_options: StorageOptions = None,
**kwargs,
):
self.validate_dataframe(df)
# thriftpy/protocol/compact.py:339:
# DeprecationWarning: tostring() is deprecated.
# Use tobytes() instead.
if "partition_on" in kwargs and partition_cols is not None:
raise ValueError(
"Cannot use both partition_on and "
"partition_cols. Use partition_cols for partitioning data"
)
elif "partition_on" in kwargs:
partition_cols = kwargs.pop("partition_on")
if partition_cols is not None:
kwargs["file_scheme"] = "hive"
# cannot use get_handle as write() does not accept file buffers
path = stringify_path(path)
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
# if filesystem is provided by fsspec, file must be opened in 'wb' mode.
kwargs["open_with"] = lambda path, _: fsspec.open(
path, "wb", **(storage_options or {})
).open()
elif storage_options:
raise ValueError(
"storage_options passed with file object or non-fsspec file path"
)
with catch_warnings(record=True):
self.api.write(
path,
df,
compression=compression,
write_index=index,
partition_on=partition_cols,
**kwargs,
)
def read(
self, path, columns=None, storage_options: StorageOptions = None, **kwargs
):
use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False)
if use_nullable_dtypes:
raise ValueError(
"The 'use_nullable_dtypes' argument is not supported for the "
"fastparquet engine"
)
path = stringify_path(path)
parquet_kwargs = {}
handles = None
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
parquet_kwargs["open_with"] = lambda path, _: fsspec.open(
path, "rb", **(storage_options or {})
).open()
elif isinstance(path, str) and not os.path.isdir(path):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(path, "rb", is_text=False)
path = handles.handle
parquet_file = self.api.ParquetFile(path, **parquet_kwargs)
result = parquet_file.to_pandas(columns=columns, **kwargs)
if handles is not None:
handles.close()
return result
@doc(storage_options=generic._shared_docs["storage_options"])
def to_parquet(
df: DataFrame,
path: Optional[FilePathOrBuffer] = None,
engine: str = "auto",
compression: Optional[str] = "snappy",
index: Optional[bool] = None,
storage_options: StorageOptions = None,
partition_cols: Optional[List[str]] = None,
**kwargs,
) -> Optional[bytes]:
"""
Write a DataFrame to the parquet format.
Parameters
----------
df : DataFrame
path : str or file-like object, default None
If a string, it will be used as Root Directory path
when writing a partitioned dataset. By file-like object,
we refer to objects with a write() method, such as a file handle
(e.g. via builtin open function) or io.BytesIO. The engine
fastparquet does not accept file-like objects. If path is None,
a bytes object is returned.
.. versionchanged:: 1.2.0
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {{'snappy', 'gzip', 'brotli', None}}, default 'snappy'
Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output. If
``False``, they will not be written to the file.
If ``None``, similar to ``True`` the dataframe's index(es)
will be saved. However, instead of being saved as values,
the RangeIndex will be stored as a range in the metadata so it
doesn't require much space and is faster. Other indexes will
be included as columns in the file output.
.. versionadded:: 0.24.0
partition_cols : str or list, optional, default None
Column names by which to partition the dataset.
Columns are partitioned in the order they are given.
Must be None if path is not a string.
.. versionadded:: 0.24.0
{storage_options}
.. versionadded:: 1.2.0
kwargs
Additional keyword arguments passed to the engine
Returns
-------
bytes if no path argument is provided else None
"""
if isinstance(partition_cols, str):
partition_cols = [partition_cols]
impl = get_engine(engine)
path_or_buf: FilePathOrBuffer = io.BytesIO() if path is None else path
impl.write(
df,
path_or_buf,
compression=compression,
index=index,
partition_cols=partition_cols,
storage_options=storage_options,
**kwargs,
)
if path is None:
assert isinstance(path_or_buf, io.BytesIO)
return path_or_buf.getvalue()
else:
return None
def read_parquet(
path,
engine: str = "auto",
columns=None,
use_nullable_dtypes: bool = False,
**kwargs,
):
"""
Load a parquet object from the file path, returning a DataFrame.
Parameters
----------
path : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be:
``file://localhost/path/to/table.parquet``.
A file URL can also be a path to a directory that contains multiple
partitioned parquet files. Both pyarrow and fastparquet support
paths to directories as well as file URLs. A directory path could be:
``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``
If you want to pass in a path object, pandas accepts any
``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method,
such as a file handle (e.g. via builtin ``open`` function)
or ``StringIO``.
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
columns : list, default=None
If not None, only these columns will be read from the file.
use_nullable_dtypes : bool, default False
If True, use dtypes that use ``pd.NA`` as missing value indicator
for the resulting DataFrame (only applicable for ``engine="pyarrow"``).
As new dtypes are added that support ``pd.NA`` in the future, the
output with this option will change to use those dtypes.
Note: this is an experimental option, and behaviour (e.g. additional
support dtypes) may change without notice.
.. versionadded:: 1.2.0
**kwargs
Any additional kwargs are passed to the engine.
Returns
-------
DataFrame
"""
impl = get_engine(engine)
return impl.read(
path, columns=columns, use_nullable_dtypes=use_nullable_dtypes, **kwargs
)