forked from 170010011/fr
45 lines
1.0 KiB
Python
45 lines
1.0 KiB
Python
|
import os
|
||
|
import sys
|
||
|
import pandas as pd
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn import svm
|
||
|
from sklearn import metrics
|
||
|
|
||
|
if len(sys.argv) < 2:
|
||
|
print("no input csv file")
|
||
|
exit(0)
|
||
|
|
||
|
|
||
|
|
||
|
df = pd.read_csv(sys.argv[1])
|
||
|
|
||
|
# print(df, df.columns[0:len(df.columns)])
|
||
|
|
||
|
xcols = [ i for i in df.columns]
|
||
|
targ = xcols.pop()
|
||
|
# print(xcols)
|
||
|
X = df.loc[:,xcols ].values
|
||
|
print(X.shape)
|
||
|
Y = df.loc[:,targ].values
|
||
|
print(Y.shape)
|
||
|
|
||
|
X = StandardScaler().fit_transform(X)
|
||
|
print(X)
|
||
|
pca = PCA(n_components=50)
|
||
|
pcaofX = pca.fit_transform(X)
|
||
|
print("shapeofX after pca",pcaofX.shape, ", cum Sum of variance ratio",pca.explained_variance_ratio_.cumsum()[-1])
|
||
|
|
||
|
# pcaofX = X
|
||
|
|
||
|
X_train, X_test, Y_train, Y_test = train_test_split(pcaofX, Y, test_size=0.3,random_state=109)
|
||
|
|
||
|
print(X_train.shape)
|
||
|
|
||
|
classifier = svm.SVC(kernel="linear")
|
||
|
classifier.fit(X_train,Y_train)
|
||
|
|
||
|
pred = classifier.predict(X_test)
|
||
|
|
||
|
print("Accuracy:",metrics.accuracy_score(Y_test, pred))
|