forked from 170010011/fr
228 lines
7.4 KiB
Python
228 lines
7.4 KiB
Python
|
"""Miscellaneous morphology functions."""
|
||
|
import numpy as np
|
||
|
import functools
|
||
|
from scipy import ndimage as ndi
|
||
|
from .._shared.utils import warn
|
||
|
from .selem import _default_selem
|
||
|
|
||
|
# Our function names don't exactly correspond to ndimages.
|
||
|
# This dictionary translates from our names to scipy's.
|
||
|
funcs = ('erosion', 'dilation', 'opening', 'closing')
|
||
|
skimage2ndimage = {x: 'grey_' + x for x in funcs}
|
||
|
|
||
|
# These function names are the same in ndimage.
|
||
|
funcs = ('binary_erosion', 'binary_dilation', 'binary_opening',
|
||
|
'binary_closing', 'black_tophat', 'white_tophat')
|
||
|
skimage2ndimage.update({x: x for x in funcs})
|
||
|
|
||
|
|
||
|
def default_selem(func):
|
||
|
"""Decorator to add a default structuring element to morphology functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
A morphology function such as erosion, dilation, opening, closing,
|
||
|
white_tophat, or black_tophat.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
func_out : function
|
||
|
The function, using a default structuring element of same dimension
|
||
|
as the input image with connectivity 1.
|
||
|
|
||
|
"""
|
||
|
@functools.wraps(func)
|
||
|
def func_out(image, selem=None, *args, **kwargs):
|
||
|
if selem is None:
|
||
|
selem = _default_selem(image.ndim)
|
||
|
return func(image, selem=selem, *args, **kwargs)
|
||
|
|
||
|
return func_out
|
||
|
|
||
|
|
||
|
def _check_dtype_supported(ar):
|
||
|
# Should use `issubdtype` for bool below, but there's a bug in numpy 1.7
|
||
|
if not (ar.dtype == bool or np.issubdtype(ar.dtype, np.integer)):
|
||
|
raise TypeError("Only bool or integer image types are supported. "
|
||
|
"Got %s." % ar.dtype)
|
||
|
|
||
|
|
||
|
def remove_small_objects(ar, min_size=64, connectivity=1, in_place=False):
|
||
|
"""Remove objects smaller than the specified size.
|
||
|
|
||
|
Expects ar to be an array with labeled objects, and removes objects
|
||
|
smaller than min_size. If `ar` is bool, the image is first labeled.
|
||
|
This leads to potentially different behavior for bool and 0-and-1
|
||
|
arrays.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ar : ndarray (arbitrary shape, int or bool type)
|
||
|
The array containing the objects of interest. If the array type is
|
||
|
int, the ints must be non-negative.
|
||
|
min_size : int, optional (default: 64)
|
||
|
The smallest allowable object size.
|
||
|
connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1)
|
||
|
The connectivity defining the neighborhood of a pixel. Used during
|
||
|
labelling if `ar` is bool.
|
||
|
in_place : bool, optional (default: False)
|
||
|
If ``True``, remove the objects in the input array itself.
|
||
|
Otherwise, make a copy.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError
|
||
|
If the input array is of an invalid type, such as float or string.
|
||
|
ValueError
|
||
|
If the input array contains negative values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray, same shape and type as input `ar`
|
||
|
The input array with small connected components removed.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import morphology
|
||
|
>>> a = np.array([[0, 0, 0, 1, 0],
|
||
|
... [1, 1, 1, 0, 0],
|
||
|
... [1, 1, 1, 0, 1]], bool)
|
||
|
>>> b = morphology.remove_small_objects(a, 6)
|
||
|
>>> b
|
||
|
array([[False, False, False, False, False],
|
||
|
[ True, True, True, False, False],
|
||
|
[ True, True, True, False, False]])
|
||
|
>>> c = morphology.remove_small_objects(a, 7, connectivity=2)
|
||
|
>>> c
|
||
|
array([[False, False, False, True, False],
|
||
|
[ True, True, True, False, False],
|
||
|
[ True, True, True, False, False]])
|
||
|
>>> d = morphology.remove_small_objects(a, 6, in_place=True)
|
||
|
>>> d is a
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
# Raising type error if not int or bool
|
||
|
_check_dtype_supported(ar)
|
||
|
|
||
|
if in_place:
|
||
|
out = ar
|
||
|
else:
|
||
|
out = ar.copy()
|
||
|
|
||
|
if min_size == 0: # shortcut for efficiency
|
||
|
return out
|
||
|
|
||
|
if out.dtype == bool:
|
||
|
selem = ndi.generate_binary_structure(ar.ndim, connectivity)
|
||
|
ccs = np.zeros_like(ar, dtype=np.int32)
|
||
|
ndi.label(ar, selem, output=ccs)
|
||
|
else:
|
||
|
ccs = out
|
||
|
|
||
|
try:
|
||
|
component_sizes = np.bincount(ccs.ravel())
|
||
|
except ValueError:
|
||
|
raise ValueError("Negative value labels are not supported. Try "
|
||
|
"relabeling the input with `scipy.ndimage.label` or "
|
||
|
"`skimage.morphology.label`.")
|
||
|
|
||
|
if len(component_sizes) == 2 and out.dtype != bool:
|
||
|
warn("Only one label was provided to `remove_small_objects`. "
|
||
|
"Did you mean to use a boolean array?")
|
||
|
|
||
|
too_small = component_sizes < min_size
|
||
|
too_small_mask = too_small[ccs]
|
||
|
out[too_small_mask] = 0
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def remove_small_holes(ar, area_threshold=64, connectivity=1, in_place=False):
|
||
|
"""Remove contiguous holes smaller than the specified size.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ar : ndarray (arbitrary shape, int or bool type)
|
||
|
The array containing the connected components of interest.
|
||
|
area_threshold : int, optional (default: 64)
|
||
|
The maximum area, in pixels, of a contiguous hole that will be filled.
|
||
|
Replaces `min_size`.
|
||
|
connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1)
|
||
|
The connectivity defining the neighborhood of a pixel.
|
||
|
in_place : bool, optional (default: False)
|
||
|
If `True`, remove the connected components in the input array itself.
|
||
|
Otherwise, make a copy.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError
|
||
|
If the input array is of an invalid type, such as float or string.
|
||
|
ValueError
|
||
|
If the input array contains negative values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray, same shape and type as input `ar`
|
||
|
The input array with small holes within connected components removed.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import morphology
|
||
|
>>> a = np.array([[1, 1, 1, 1, 1, 0],
|
||
|
... [1, 1, 1, 0, 1, 0],
|
||
|
... [1, 0, 0, 1, 1, 0],
|
||
|
... [1, 1, 1, 1, 1, 0]], bool)
|
||
|
>>> b = morphology.remove_small_holes(a, 2)
|
||
|
>>> b
|
||
|
array([[ True, True, True, True, True, False],
|
||
|
[ True, True, True, True, True, False],
|
||
|
[ True, False, False, True, True, False],
|
||
|
[ True, True, True, True, True, False]])
|
||
|
>>> c = morphology.remove_small_holes(a, 2, connectivity=2)
|
||
|
>>> c
|
||
|
array([[ True, True, True, True, True, False],
|
||
|
[ True, True, True, False, True, False],
|
||
|
[ True, False, False, True, True, False],
|
||
|
[ True, True, True, True, True, False]])
|
||
|
>>> d = morphology.remove_small_holes(a, 2, in_place=True)
|
||
|
>>> d is a
|
||
|
True
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If the array type is int, it is assumed that it contains already-labeled
|
||
|
objects. The labels are not kept in the output image (this function always
|
||
|
outputs a bool image). It is suggested that labeling is completed after
|
||
|
using this function.
|
||
|
|
||
|
"""
|
||
|
_check_dtype_supported(ar)
|
||
|
|
||
|
# Creates warning if image is an integer image
|
||
|
if ar.dtype != bool:
|
||
|
warn("Any labeled images will be returned as a boolean array. "
|
||
|
"Did you mean to use a boolean array?", UserWarning)
|
||
|
|
||
|
if in_place:
|
||
|
out = ar
|
||
|
else:
|
||
|
out = ar.copy()
|
||
|
|
||
|
# Creating the inverse of ar
|
||
|
if in_place:
|
||
|
np.logical_not(out, out=out)
|
||
|
else:
|
||
|
out = np.logical_not(out)
|
||
|
|
||
|
# removing small objects from the inverse of ar
|
||
|
out = remove_small_objects(out, area_threshold, connectivity, in_place)
|
||
|
|
||
|
if in_place:
|
||
|
np.logical_not(out, out=out)
|
||
|
else:
|
||
|
out = np.logical_not(out)
|
||
|
|
||
|
return out
|