forked from 170010011/fr
655 lines
21 KiB
Python
655 lines
21 KiB
Python
|
import numpy as np
|
||
|
|
||
|
from ..color.colorconv import rgb2gray, rgba2rgb
|
||
|
from ..util.dtype import dtype_range, dtype_limits
|
||
|
from .._shared.utils import warn
|
||
|
|
||
|
|
||
|
__all__ = ['histogram', 'cumulative_distribution', 'equalize_hist',
|
||
|
'rescale_intensity', 'adjust_gamma', 'adjust_log', 'adjust_sigmoid']
|
||
|
|
||
|
|
||
|
DTYPE_RANGE = dtype_range.copy()
|
||
|
DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items())
|
||
|
DTYPE_RANGE.update({'uint10': (0, 2 ** 10 - 1),
|
||
|
'uint12': (0, 2 ** 12 - 1),
|
||
|
'uint14': (0, 2 ** 14 - 1),
|
||
|
'bool': dtype_range[bool],
|
||
|
'float': dtype_range[np.float64]})
|
||
|
|
||
|
|
||
|
def _offset_array(arr, low_boundary, high_boundary):
|
||
|
"""Offset the array to get the lowest value at 0 if negative."""
|
||
|
if low_boundary < 0:
|
||
|
offset = low_boundary
|
||
|
dyn_range = high_boundary - low_boundary
|
||
|
# get smallest dtype that can hold both minimum and offset maximum
|
||
|
offset_dtype = np.promote_types(np.min_scalar_type(dyn_range),
|
||
|
np.min_scalar_type(low_boundary))
|
||
|
if arr.dtype != offset_dtype:
|
||
|
# prevent overflow errors when offsetting
|
||
|
arr = arr.astype(offset_dtype)
|
||
|
arr = arr - offset
|
||
|
else:
|
||
|
offset = 0
|
||
|
return arr, offset
|
||
|
|
||
|
|
||
|
def _bincount_histogram(image, source_range):
|
||
|
"""
|
||
|
Efficient histogram calculation for an image of integers.
|
||
|
|
||
|
This function is significantly more efficient than np.histogram but
|
||
|
works only on images of integers. It is based on np.bincount.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array
|
||
|
Input image.
|
||
|
source_range : string
|
||
|
'image' determines the range from the input image.
|
||
|
'dtype' determines the range from the expected range of the images
|
||
|
of that data type.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hist : array
|
||
|
The values of the histogram.
|
||
|
bin_centers : array
|
||
|
The values at the center of the bins.
|
||
|
"""
|
||
|
if source_range not in ['image', 'dtype']:
|
||
|
raise ValueError('Incorrect value for `source_range` argument: {}'.format(source_range))
|
||
|
if source_range == 'image':
|
||
|
image_min = int(image.min().astype(np.int64))
|
||
|
image_max = int(image.max().astype(np.int64))
|
||
|
elif source_range == 'dtype':
|
||
|
image_min, image_max = dtype_limits(image, clip_negative=False)
|
||
|
image, offset = _offset_array(image, image_min, image_max)
|
||
|
hist = np.bincount(image.ravel(), minlength=image_max - image_min + 1)
|
||
|
bin_centers = np.arange(image_min, image_max + 1)
|
||
|
if source_range == 'image':
|
||
|
idx = max(image_min, 0)
|
||
|
hist = hist[idx:]
|
||
|
return hist, bin_centers
|
||
|
|
||
|
|
||
|
def histogram(image, nbins=256, source_range='image', normalize=False):
|
||
|
"""Return histogram of image.
|
||
|
|
||
|
Unlike `numpy.histogram`, this function returns the centers of bins and
|
||
|
does not rebin integer arrays. For integer arrays, each integer value has
|
||
|
its own bin, which improves speed and intensity-resolution.
|
||
|
|
||
|
The histogram is computed on the flattened image: for color images, the
|
||
|
function should be used separately on each channel to obtain a histogram
|
||
|
for each color channel.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array
|
||
|
Input image.
|
||
|
nbins : int, optional
|
||
|
Number of bins used to calculate histogram. This value is ignored for
|
||
|
integer arrays.
|
||
|
source_range : string, optional
|
||
|
'image' (default) determines the range from the input image.
|
||
|
'dtype' determines the range from the expected range of the images
|
||
|
of that data type.
|
||
|
normalize : bool, optional
|
||
|
If True, normalize the histogram by the sum of its values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hist : array
|
||
|
The values of the histogram.
|
||
|
bin_centers : array
|
||
|
The values at the center of the bins.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
cumulative_distribution
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import data, exposure, img_as_float
|
||
|
>>> image = img_as_float(data.camera())
|
||
|
>>> np.histogram(image, bins=2)
|
||
|
(array([ 93585, 168559]), array([0. , 0.5, 1. ]))
|
||
|
>>> exposure.histogram(image, nbins=2)
|
||
|
(array([ 93585, 168559]), array([0.25, 0.75]))
|
||
|
"""
|
||
|
sh = image.shape
|
||
|
if len(sh) == 3 and sh[-1] < 4:
|
||
|
warn("This might be a color image. The histogram will be "
|
||
|
"computed on the flattened image. You can instead "
|
||
|
"apply this function to each color channel.")
|
||
|
|
||
|
image = image.flatten()
|
||
|
# For integer types, histogramming with bincount is more efficient.
|
||
|
if np.issubdtype(image.dtype, np.integer):
|
||
|
hist, bin_centers = _bincount_histogram(image, source_range)
|
||
|
else:
|
||
|
if source_range == 'image':
|
||
|
hist_range = None
|
||
|
elif source_range == 'dtype':
|
||
|
hist_range = dtype_limits(image, clip_negative=False)
|
||
|
else:
|
||
|
ValueError('Wrong value for the `source_range` argument')
|
||
|
hist, bin_edges = np.histogram(image, bins=nbins, range=hist_range)
|
||
|
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.
|
||
|
|
||
|
if normalize:
|
||
|
hist = hist / np.sum(hist)
|
||
|
return hist, bin_centers
|
||
|
|
||
|
|
||
|
def cumulative_distribution(image, nbins=256):
|
||
|
"""Return cumulative distribution function (cdf) for the given image.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array
|
||
|
Image array.
|
||
|
nbins : int, optional
|
||
|
Number of bins for image histogram.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
img_cdf : array
|
||
|
Values of cumulative distribution function.
|
||
|
bin_centers : array
|
||
|
Centers of bins.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
histogram
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Cumulative_distribution_function
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import data, exposure, img_as_float
|
||
|
>>> image = img_as_float(data.camera())
|
||
|
>>> hi = exposure.histogram(image)
|
||
|
>>> cdf = exposure.cumulative_distribution(image)
|
||
|
>>> np.alltrue(cdf[0] == np.cumsum(hi[0])/float(image.size))
|
||
|
True
|
||
|
"""
|
||
|
hist, bin_centers = histogram(image, nbins)
|
||
|
img_cdf = hist.cumsum()
|
||
|
img_cdf = img_cdf / float(img_cdf[-1])
|
||
|
return img_cdf, bin_centers
|
||
|
|
||
|
|
||
|
def equalize_hist(image, nbins=256, mask=None):
|
||
|
"""Return image after histogram equalization.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array
|
||
|
Image array.
|
||
|
nbins : int, optional
|
||
|
Number of bins for image histogram. Note: this argument is
|
||
|
ignored for integer images, for which each integer is its own
|
||
|
bin.
|
||
|
mask: ndarray of bools or 0s and 1s, optional
|
||
|
Array of same shape as `image`. Only points at which mask == True
|
||
|
are used for the equalization, which is applied to the whole image.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : float array
|
||
|
Image array after histogram equalization.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function is adapted from [1]_ with the author's permission.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] http://www.janeriksolem.net/histogram-equalization-with-python-and.html
|
||
|
.. [2] https://en.wikipedia.org/wiki/Histogram_equalization
|
||
|
|
||
|
"""
|
||
|
if mask is not None:
|
||
|
mask = np.array(mask, dtype=bool)
|
||
|
cdf, bin_centers = cumulative_distribution(image[mask], nbins)
|
||
|
else:
|
||
|
cdf, bin_centers = cumulative_distribution(image, nbins)
|
||
|
out = np.interp(image.flat, bin_centers, cdf)
|
||
|
return out.reshape(image.shape)
|
||
|
|
||
|
|
||
|
def intensity_range(image, range_values='image', clip_negative=False):
|
||
|
"""Return image intensity range (min, max) based on desired value type.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array
|
||
|
Input image.
|
||
|
range_values : str or 2-tuple, optional
|
||
|
The image intensity range is configured by this parameter.
|
||
|
The possible values for this parameter are enumerated below.
|
||
|
|
||
|
'image'
|
||
|
Return image min/max as the range.
|
||
|
'dtype'
|
||
|
Return min/max of the image's dtype as the range.
|
||
|
dtype-name
|
||
|
Return intensity range based on desired `dtype`. Must be valid key
|
||
|
in `DTYPE_RANGE`. Note: `image` is ignored for this range type.
|
||
|
2-tuple
|
||
|
Return `range_values` as min/max intensities. Note that there's no
|
||
|
reason to use this function if you just want to specify the
|
||
|
intensity range explicitly. This option is included for functions
|
||
|
that use `intensity_range` to support all desired range types.
|
||
|
|
||
|
clip_negative : bool, optional
|
||
|
If True, clip the negative range (i.e. return 0 for min intensity)
|
||
|
even if the image dtype allows negative values.
|
||
|
"""
|
||
|
if range_values == 'dtype':
|
||
|
range_values = image.dtype.type
|
||
|
|
||
|
if range_values == 'image':
|
||
|
i_min = np.min(image)
|
||
|
i_max = np.max(image)
|
||
|
elif range_values in DTYPE_RANGE:
|
||
|
i_min, i_max = DTYPE_RANGE[range_values]
|
||
|
if clip_negative:
|
||
|
i_min = 0
|
||
|
else:
|
||
|
i_min, i_max = range_values
|
||
|
return i_min, i_max
|
||
|
|
||
|
|
||
|
def _output_dtype(dtype_or_range):
|
||
|
"""Determine the output dtype for rescale_intensity.
|
||
|
|
||
|
The dtype is determined according to the following rules:
|
||
|
- if ``dtype_or_range`` is a dtype, that is the output dtype.
|
||
|
- if ``dtype_or_range`` is a dtype string, that is the dtype used, unless
|
||
|
it is not a NumPy data type (e.g. 'uint12' for 12-bit unsigned integers),
|
||
|
in which case the data type that can contain it will be used
|
||
|
(e.g. uint16 in this case).
|
||
|
- if ``dtype_or_range`` is a pair of values, the output data type will be
|
||
|
float.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype_or_range : type, string, or 2-tuple of int/float
|
||
|
The desired range for the output, expressed as either a NumPy dtype or
|
||
|
as a (min, max) pair of numbers.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out_dtype : type
|
||
|
The data type appropriate for the desired output.
|
||
|
"""
|
||
|
if type(dtype_or_range) in [list, tuple, np.ndarray]:
|
||
|
# pair of values: always return float.
|
||
|
return float
|
||
|
if type(dtype_or_range) == type:
|
||
|
# already a type: return it
|
||
|
return dtype_or_range
|
||
|
if dtype_or_range in DTYPE_RANGE:
|
||
|
# string key in DTYPE_RANGE dictionary
|
||
|
try:
|
||
|
# if it's a canonical numpy dtype, convert
|
||
|
return np.dtype(dtype_or_range).type
|
||
|
except TypeError: # uint10, uint12, uint14
|
||
|
# otherwise, return uint16
|
||
|
return np.uint16
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'Incorrect value for out_range, should be a valid image data '
|
||
|
f'type or a pair of values, got {dtype_or_range}.'
|
||
|
)
|
||
|
|
||
|
|
||
|
def rescale_intensity(image, in_range='image', out_range='dtype'):
|
||
|
"""Return image after stretching or shrinking its intensity levels.
|
||
|
|
||
|
The desired intensity range of the input and output, `in_range` and
|
||
|
`out_range` respectively, are used to stretch or shrink the intensity range
|
||
|
of the input image. See examples below.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array
|
||
|
Image array.
|
||
|
in_range, out_range : str or 2-tuple, optional
|
||
|
Min and max intensity values of input and output image.
|
||
|
The possible values for this parameter are enumerated below.
|
||
|
|
||
|
'image'
|
||
|
Use image min/max as the intensity range.
|
||
|
'dtype'
|
||
|
Use min/max of the image's dtype as the intensity range.
|
||
|
dtype-name
|
||
|
Use intensity range based on desired `dtype`. Must be valid key
|
||
|
in `DTYPE_RANGE`.
|
||
|
2-tuple
|
||
|
Use `range_values` as explicit min/max intensities.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : array
|
||
|
Image array after rescaling its intensity. This image is the same dtype
|
||
|
as the input image.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionchanged:: 0.17
|
||
|
The dtype of the output array has changed to match the output dtype, or
|
||
|
float if the output range is specified by a pair of floats.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
equalize_hist
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
By default, the min/max intensities of the input image are stretched to
|
||
|
the limits allowed by the image's dtype, since `in_range` defaults to
|
||
|
'image' and `out_range` defaults to 'dtype':
|
||
|
|
||
|
>>> image = np.array([51, 102, 153], dtype=np.uint8)
|
||
|
>>> rescale_intensity(image)
|
||
|
array([ 0, 127, 255], dtype=uint8)
|
||
|
|
||
|
It's easy to accidentally convert an image dtype from uint8 to float:
|
||
|
|
||
|
>>> 1.0 * image
|
||
|
array([ 51., 102., 153.])
|
||
|
|
||
|
Use `rescale_intensity` to rescale to the proper range for float dtypes:
|
||
|
|
||
|
>>> image_float = 1.0 * image
|
||
|
>>> rescale_intensity(image_float)
|
||
|
array([0. , 0.5, 1. ])
|
||
|
|
||
|
To maintain the low contrast of the original, use the `in_range` parameter:
|
||
|
|
||
|
>>> rescale_intensity(image_float, in_range=(0, 255))
|
||
|
array([0.2, 0.4, 0.6])
|
||
|
|
||
|
If the min/max value of `in_range` is more/less than the min/max image
|
||
|
intensity, then the intensity levels are clipped:
|
||
|
|
||
|
>>> rescale_intensity(image_float, in_range=(0, 102))
|
||
|
array([0.5, 1. , 1. ])
|
||
|
|
||
|
If you have an image with signed integers but want to rescale the image to
|
||
|
just the positive range, use the `out_range` parameter. In that case, the
|
||
|
output dtype will be float:
|
||
|
|
||
|
>>> image = np.array([-10, 0, 10], dtype=np.int8)
|
||
|
>>> rescale_intensity(image, out_range=(0, 127))
|
||
|
array([ 0. , 63.5, 127. ])
|
||
|
|
||
|
To get the desired range with a specific dtype, use ``.astype()``:
|
||
|
|
||
|
>>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8)
|
||
|
array([ 0, 63, 127], dtype=int8)
|
||
|
|
||
|
If the input image is constant, the output will be clipped directly to the
|
||
|
output range:
|
||
|
>>> image = np.array([130, 130, 130], dtype=np.int32)
|
||
|
>>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32)
|
||
|
array([127, 127, 127], dtype=int32)
|
||
|
"""
|
||
|
if out_range in ['dtype', 'image']:
|
||
|
out_dtype = _output_dtype(image.dtype.type)
|
||
|
else:
|
||
|
out_dtype = _output_dtype(out_range)
|
||
|
|
||
|
imin, imax = map(float, intensity_range(image, in_range))
|
||
|
omin, omax = map(float, intensity_range(image, out_range,
|
||
|
clip_negative=(imin >= 0)))
|
||
|
|
||
|
if np.any(np.isnan([imin, imax, omin, omax])):
|
||
|
warn(
|
||
|
"One or more intensity levels are NaN. Rescaling will broadcast "
|
||
|
"NaN to the full image. Provide intensity levels yourself to "
|
||
|
"avoid this. E.g. with np.nanmin(image), np.nanmax(image).",
|
||
|
stacklevel=2
|
||
|
)
|
||
|
|
||
|
image = np.clip(image, imin, imax)
|
||
|
|
||
|
if imin != imax:
|
||
|
image = (image - imin) / (imax - imin)
|
||
|
return np.asarray(image * (omax - omin) + omin, dtype=out_dtype)
|
||
|
else:
|
||
|
return np.clip(image, omin, omax).astype(out_dtype)
|
||
|
|
||
|
|
||
|
def _assert_non_negative(image):
|
||
|
|
||
|
if np.any(image < 0):
|
||
|
raise ValueError('Image Correction methods work correctly only on '
|
||
|
'images with non-negative values. Use '
|
||
|
'skimage.exposure.rescale_intensity.')
|
||
|
|
||
|
|
||
|
def _adjust_gamma_u8(image, gamma, gain):
|
||
|
"""LUT based implmentation of gamma adjustement.
|
||
|
|
||
|
"""
|
||
|
lut = (255 * gain * (np.linspace(0, 1, 256) ** gamma)).astype('uint8')
|
||
|
return lut[image]
|
||
|
|
||
|
|
||
|
def adjust_gamma(image, gamma=1, gain=1):
|
||
|
"""Performs Gamma Correction on the input image.
|
||
|
|
||
|
Also known as Power Law Transform.
|
||
|
This function transforms the input image pixelwise according to the
|
||
|
equation ``O = I**gamma`` after scaling each pixel to the range 0 to 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : ndarray
|
||
|
Input image.
|
||
|
gamma : float, optional
|
||
|
Non negative real number. Default value is 1.
|
||
|
gain : float, optional
|
||
|
The constant multiplier. Default value is 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray
|
||
|
Gamma corrected output image.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
adjust_log
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For gamma greater than 1, the histogram will shift towards left and
|
||
|
the output image will be darker than the input image.
|
||
|
|
||
|
For gamma less than 1, the histogram will shift towards right and
|
||
|
the output image will be brighter than the input image.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Gamma_correction
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage import data, exposure, img_as_float
|
||
|
>>> image = img_as_float(data.moon())
|
||
|
>>> gamma_corrected = exposure.adjust_gamma(image, 2)
|
||
|
>>> # Output is darker for gamma > 1
|
||
|
>>> image.mean() > gamma_corrected.mean()
|
||
|
True
|
||
|
"""
|
||
|
if gamma < 0:
|
||
|
raise ValueError("Gamma should be a non-negative real number.")
|
||
|
|
||
|
dtype = image.dtype.type
|
||
|
|
||
|
if dtype is np.uint8:
|
||
|
out = _adjust_gamma_u8(image, gamma, gain)
|
||
|
else:
|
||
|
_assert_non_negative(image)
|
||
|
|
||
|
scale = float(dtype_limits(image, True)[1]
|
||
|
- dtype_limits(image, True)[0])
|
||
|
|
||
|
out = (((image / scale) ** gamma) * scale * gain).astype(dtype)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def adjust_log(image, gain=1, inv=False):
|
||
|
"""Performs Logarithmic correction on the input image.
|
||
|
|
||
|
This function transforms the input image pixelwise according to the
|
||
|
equation ``O = gain*log(1 + I)`` after scaling each pixel to the range 0 to 1.
|
||
|
For inverse logarithmic correction, the equation is ``O = gain*(2**I - 1)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : ndarray
|
||
|
Input image.
|
||
|
gain : float, optional
|
||
|
The constant multiplier. Default value is 1.
|
||
|
inv : float, optional
|
||
|
If True, it performs inverse logarithmic correction,
|
||
|
else correction will be logarithmic. Defaults to False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray
|
||
|
Logarithm corrected output image.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
adjust_gamma
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] http://www.ece.ucsb.edu/Faculty/Manjunath/courses/ece178W03/EnhancePart1.pdf
|
||
|
|
||
|
"""
|
||
|
_assert_non_negative(image)
|
||
|
dtype = image.dtype.type
|
||
|
scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0])
|
||
|
|
||
|
if inv:
|
||
|
out = (2 ** (image / scale) - 1) * scale * gain
|
||
|
return dtype(out)
|
||
|
|
||
|
out = np.log2(1 + image / scale) * scale * gain
|
||
|
return out.astype(dtype)
|
||
|
|
||
|
|
||
|
def adjust_sigmoid(image, cutoff=0.5, gain=10, inv=False):
|
||
|
"""Performs Sigmoid Correction on the input image.
|
||
|
|
||
|
Also known as Contrast Adjustment.
|
||
|
This function transforms the input image pixelwise according to the
|
||
|
equation ``O = 1/(1 + exp*(gain*(cutoff - I)))`` after scaling each pixel
|
||
|
to the range 0 to 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : ndarray
|
||
|
Input image.
|
||
|
cutoff : float, optional
|
||
|
Cutoff of the sigmoid function that shifts the characteristic curve
|
||
|
in horizontal direction. Default value is 0.5.
|
||
|
gain : float, optional
|
||
|
The constant multiplier in exponential's power of sigmoid function.
|
||
|
Default value is 10.
|
||
|
inv : bool, optional
|
||
|
If True, returns the negative sigmoid correction. Defaults to False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray
|
||
|
Sigmoid corrected output image.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
adjust_gamma
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Gustav J. Braun, "Image Lightness Rescaling Using Sigmoidal Contrast
|
||
|
Enhancement Functions",
|
||
|
http://www.cis.rit.edu/fairchild/PDFs/PAP07.pdf
|
||
|
|
||
|
"""
|
||
|
_assert_non_negative(image)
|
||
|
dtype = image.dtype.type
|
||
|
scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0])
|
||
|
|
||
|
if inv:
|
||
|
out = (1 - 1 / (1 + np.exp(gain * (cutoff - image / scale)))) * scale
|
||
|
return dtype(out)
|
||
|
|
||
|
out = (1 / (1 + np.exp(gain * (cutoff - image / scale)))) * scale
|
||
|
return out.astype(dtype)
|
||
|
|
||
|
|
||
|
def is_low_contrast(image, fraction_threshold=0.05, lower_percentile=1,
|
||
|
upper_percentile=99, method='linear'):
|
||
|
"""Determine if an image is low contrast.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array-like
|
||
|
The image under test.
|
||
|
fraction_threshold : float, optional
|
||
|
The low contrast fraction threshold. An image is considered low-
|
||
|
contrast when its range of brightness spans less than this
|
||
|
fraction of its data type's full range. [1]_
|
||
|
lower_percentile : float, optional
|
||
|
Disregard values below this percentile when computing image contrast.
|
||
|
upper_percentile : float, optional
|
||
|
Disregard values above this percentile when computing image contrast.
|
||
|
method : str, optional
|
||
|
The contrast determination method. Right now the only available
|
||
|
option is "linear".
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : bool
|
||
|
True when the image is determined to be low contrast.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://scikit-image.org/docs/dev/user_guide/data_types.html
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> image = np.linspace(0, 0.04, 100)
|
||
|
>>> is_low_contrast(image)
|
||
|
True
|
||
|
>>> image[-1] = 1
|
||
|
>>> is_low_contrast(image)
|
||
|
True
|
||
|
>>> is_low_contrast(image, upper_percentile=100)
|
||
|
False
|
||
|
"""
|
||
|
image = np.asanyarray(image)
|
||
|
if image.ndim == 3:
|
||
|
if image.shape[2] == 4:
|
||
|
image = rgba2rgb(image)
|
||
|
if image.shape[2] == 3:
|
||
|
image = rgb2gray(image)
|
||
|
|
||
|
dlimits = dtype_limits(image, clip_negative=False)
|
||
|
limits = np.percentile(image, [lower_percentile, upper_percentile])
|
||
|
ratio = (limits[1] - limits[0]) / (dlimits[1] - dlimits[0])
|
||
|
|
||
|
return ratio < fraction_threshold
|