fr/fr_env/lib/python3.8/site-packages/sklearn/utils/metaestimators.py

219 lines
7.7 KiB
Python
Raw Permalink Normal View History

2021-03-02 18:34:59 +05:30
"""Utilities for meta-estimators"""
# Author: Joel Nothman
# Andreas Mueller
# License: BSD
from typing import List, Any
from abc import ABCMeta, abstractmethod
from operator import attrgetter
from functools import update_wrapper
import numpy as np
from ..utils import _safe_indexing
from ..base import BaseEstimator
from ..base import _is_pairwise
__all__ = ['if_delegate_has_method']
class _BaseComposition(BaseEstimator, metaclass=ABCMeta):
"""Handles parameter management for classifiers composed of named estimators.
"""
steps: List[Any]
@abstractmethod
def __init__(self):
pass
def _get_params(self, attr, deep=True):
out = super().get_params(deep=deep)
if not deep:
return out
estimators = getattr(self, attr)
out.update(estimators)
for name, estimator in estimators:
if hasattr(estimator, 'get_params'):
for key, value in estimator.get_params(deep=True).items():
out['%s__%s' % (name, key)] = value
return out
def _set_params(self, attr, **params):
# Ensure strict ordering of parameter setting:
# 1. All steps
if attr in params:
setattr(self, attr, params.pop(attr))
# 2. Step replacement
items = getattr(self, attr)
names = []
if items:
names, _ = zip(*items)
for name in list(params.keys()):
if '__' not in name and name in names:
self._replace_estimator(attr, name, params.pop(name))
# 3. Step parameters and other initialisation arguments
super().set_params(**params)
return self
def _replace_estimator(self, attr, name, new_val):
# assumes `name` is a valid estimator name
new_estimators = list(getattr(self, attr))
for i, (estimator_name, _) in enumerate(new_estimators):
if estimator_name == name:
new_estimators[i] = (name, new_val)
break
setattr(self, attr, new_estimators)
def _validate_names(self, names):
if len(set(names)) != len(names):
raise ValueError('Names provided are not unique: '
'{0!r}'.format(list(names)))
invalid_names = set(names).intersection(self.get_params(deep=False))
if invalid_names:
raise ValueError('Estimator names conflict with constructor '
'arguments: {0!r}'.format(sorted(invalid_names)))
invalid_names = [name for name in names if '__' in name]
if invalid_names:
raise ValueError('Estimator names must not contain __: got '
'{0!r}'.format(invalid_names))
class _IffHasAttrDescriptor:
"""Implements a conditional property using the descriptor protocol.
Using this class to create a decorator will raise an ``AttributeError``
if none of the delegates (specified in ``delegate_names``) is an attribute
of the base object or the first found delegate does not have an attribute
``attribute_name``.
This allows ducktyping of the decorated method based on
``delegate.attribute_name``. Here ``delegate`` is the first item in
``delegate_names`` for which ``hasattr(object, delegate) is True``.
See https://docs.python.org/3/howto/descriptor.html for an explanation of
descriptors.
"""
def __init__(self, fn, delegate_names, attribute_name):
self.fn = fn
self.delegate_names = delegate_names
self.attribute_name = attribute_name
# update the docstring of the descriptor
update_wrapper(self, fn)
def __get__(self, obj, type=None):
# raise an AttributeError if the attribute is not present on the object
if obj is not None:
# delegate only on instances, not the classes.
# this is to allow access to the docstrings.
for delegate_name in self.delegate_names:
try:
delegate = attrgetter(delegate_name)(obj)
except AttributeError:
continue
else:
getattr(delegate, self.attribute_name)
break
else:
attrgetter(self.delegate_names[-1])(obj)
# lambda, but not partial, allows help() to work with update_wrapper
out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
# update the docstring of the returned function
update_wrapper(out, self.fn)
return out
def if_delegate_has_method(delegate):
"""Create a decorator for methods that are delegated to a sub-estimator
This enables ducktyping by hasattr returning True according to the
sub-estimator.
Parameters
----------
delegate : string, list of strings or tuple of strings
Name of the sub-estimator that can be accessed as an attribute of the
base object. If a list or a tuple of names are provided, the first
sub-estimator that is an attribute of the base object will be used.
"""
if isinstance(delegate, list):
delegate = tuple(delegate)
if not isinstance(delegate, tuple):
delegate = (delegate,)
return lambda fn: _IffHasAttrDescriptor(fn, delegate,
attribute_name=fn.__name__)
def _safe_split(estimator, X, y, indices, train_indices=None):
"""Create subset of dataset and properly handle kernels.
Slice X, y according to indices for cross-validation, but take care of
precomputed kernel-matrices or pairwise affinities / distances.
If ``estimator._pairwise is True``, X needs to be square and
we slice rows and columns. If ``train_indices`` is not None,
we slice rows using ``indices`` (assumed the test set) and columns
using ``train_indices``, indicating the training set.
.. deprecated:: 0.24
The _pairwise attribute is deprecated in 0.24. From 1.1
(renaming of 0.26) and onward, this function will check for the
pairwise estimator tag.
Labels y will always be indexed only along the first axis.
Parameters
----------
estimator : object
Estimator to determine whether we should slice only rows or rows and
columns.
X : array-like, sparse matrix or iterable
Data to be indexed. If ``estimator._pairwise is True``,
this needs to be a square array-like or sparse matrix.
y : array-like, sparse matrix or iterable
Targets to be indexed.
indices : array of int
Rows to select from X and y.
If ``estimator._pairwise is True`` and ``train_indices is None``
then ``indices`` will also be used to slice columns.
train_indices : array of int or None, default=None
If ``estimator._pairwise is True`` and ``train_indices is not None``,
then ``train_indices`` will be use to slice the columns of X.
Returns
-------
X_subset : array-like, sparse matrix or list
Indexed data.
y_subset : array-like, sparse matrix or list
Indexed targets.
"""
if _is_pairwise(estimator):
if not hasattr(X, "shape"):
raise ValueError("Precomputed kernels or affinity matrices have "
"to be passed as arrays or sparse matrices.")
# X is a precomputed square kernel matrix
if X.shape[0] != X.shape[1]:
raise ValueError("X should be a square kernel matrix")
if train_indices is None:
X_subset = X[np.ix_(indices, indices)]
else:
X_subset = X[np.ix_(indices, train_indices)]
else:
X_subset = _safe_indexing(X, indices)
if y is not None:
y_subset = _safe_indexing(y, indices)
else:
y_subset = None
return X_subset, y_subset