fr/fr_env/lib/python3.8/site-packages/sklearn/utils/fixes.py

223 lines
7.1 KiB
Python
Raw Permalink Normal View History

2021-03-02 18:34:59 +05:30
"""Compatibility fixes for older version of python, numpy and scipy
If you add content to this file, please give the version of the package
at which the fixe is no longer needed.
"""
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Fabian Pedregosa <fpedregosa@acm.org>
# Lars Buitinck
#
# License: BSD 3 clause
from functools import update_wrapper
from distutils.version import LooseVersion
import functools
import numpy as np
import scipy.sparse as sp
import scipy
import scipy.stats
from scipy.sparse.linalg import lsqr as sparse_lsqr # noqa
from numpy.ma import MaskedArray as _MaskedArray # TODO: remove in 1.0
from .._config import config_context, get_config
from .deprecation import deprecated
try:
from pkg_resources import parse_version # type: ignore
except ImportError:
# setuptools not installed
parse_version = LooseVersion # type: ignore
np_version = parse_version(np.__version__)
sp_version = parse_version(scipy.__version__)
if sp_version >= parse_version('1.4'):
from scipy.sparse.linalg import lobpcg
else:
# Backport of lobpcg functionality from scipy 1.4.0, can be removed
# once support for sp_version < parse_version('1.4') is dropped
# mypy error: Name 'lobpcg' already defined (possibly by an import)
from ..externals._lobpcg import lobpcg # type: ignore # noqa
def _object_dtype_isnan(X):
return X != X
# TODO: replace by copy=False, when only scipy > 1.1 is supported.
def _astype_copy_false(X):
"""Returns the copy=False parameter for
{ndarray, csr_matrix, csc_matrix}.astype when possible,
otherwise don't specify
"""
if sp_version >= parse_version('1.1') or not sp.issparse(X):
return {'copy': False}
else:
return {}
def _joblib_parallel_args(**kwargs):
"""Set joblib.Parallel arguments in a compatible way for 0.11 and 0.12+
For joblib 0.11 this maps both ``prefer`` and ``require`` parameters to
a specific ``backend``.
Parameters
----------
prefer : str in {'processes', 'threads'} or None
Soft hint to choose the default backend if no specific backend
was selected with the parallel_backend context manager.
require : 'sharedmem' or None
Hard condstraint to select the backend. If set to 'sharedmem',
the selected backend will be single-host and thread-based even
if the user asked for a non-thread based backend with
parallel_backend.
See joblib.Parallel documentation for more details
"""
import joblib
if parse_version(joblib.__version__) >= parse_version('0.12'):
return kwargs
extra_args = set(kwargs.keys()).difference({'prefer', 'require'})
if extra_args:
raise NotImplementedError('unhandled arguments %s with joblib %s'
% (list(extra_args), joblib.__version__))
args = {}
if 'prefer' in kwargs:
prefer = kwargs['prefer']
if prefer not in ['threads', 'processes', None]:
raise ValueError('prefer=%s is not supported' % prefer)
args['backend'] = {'threads': 'threading',
'processes': 'multiprocessing',
None: None}[prefer]
if 'require' in kwargs:
require = kwargs['require']
if require not in [None, 'sharedmem']:
raise ValueError('require=%s is not supported' % require)
if require == 'sharedmem':
args['backend'] = 'threading'
return args
class loguniform(scipy.stats.reciprocal):
"""A class supporting log-uniform random variables.
Parameters
----------
low : float
The minimum value
high : float
The maximum value
Methods
-------
rvs(self, size=None, random_state=None)
Generate log-uniform random variables
The most useful method for Scikit-learn usage is highlighted here.
For a full list, see
`scipy.stats.reciprocal
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.reciprocal.html>`_.
This list includes all functions of ``scipy.stats`` continuous
distributions such as ``pdf``.
Notes
-----
This class generates values between ``low`` and ``high`` or
low <= loguniform(low, high).rvs() <= high
The logarithmic probability density function (PDF) is uniform. When
``x`` is a uniformly distributed random variable between 0 and 1, ``10**x``
are random variables that are equally likely to be returned.
This class is an alias to ``scipy.stats.reciprocal``, which uses the
reciprocal distribution:
https://en.wikipedia.org/wiki/Reciprocal_distribution
Examples
--------
>>> from sklearn.utils.fixes import loguniform
>>> rv = loguniform(1e-3, 1e1)
>>> rvs = rv.rvs(random_state=42, size=1000)
>>> rvs.min() # doctest: +SKIP
0.0010435856341129003
>>> rvs.max() # doctest: +SKIP
9.97403052786026
"""
@deprecated(
'MaskedArray is deprecated in version 0.23 and will be removed in version '
'1.0 (renaming of 0.25). Use numpy.ma.MaskedArray instead.'
)
class MaskedArray(_MaskedArray):
pass # TODO: remove in 1.0
def _take_along_axis(arr, indices, axis):
"""Implements a simplified version of np.take_along_axis if numpy
version < 1.15"""
if np_version >= parse_version('1.15'):
return np.take_along_axis(arr=arr, indices=indices, axis=axis)
else:
if axis is None:
arr = arr.flatten()
if not np.issubdtype(indices.dtype, np.intp):
raise IndexError('`indices` must be an integer array')
if arr.ndim != indices.ndim:
raise ValueError(
"`indices` and `arr` must have the same number of dimensions")
shape_ones = (1,) * indices.ndim
dest_dims = (
list(range(axis)) +
[None] +
list(range(axis+1, indices.ndim))
)
# build a fancy index, consisting of orthogonal aranges, with the
# requested index inserted at the right location
fancy_index = []
for dim, n in zip(dest_dims, arr.shape):
if dim is None:
fancy_index.append(indices)
else:
ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
fancy_index.append(np.arange(n).reshape(ind_shape))
fancy_index = tuple(fancy_index)
return arr[fancy_index]
# remove when https://github.com/joblib/joblib/issues/1071 is fixed
def delayed(function):
"""Decorator used to capture the arguments of a function."""
@functools.wraps(function)
def delayed_function(*args, **kwargs):
return _FuncWrapper(function), args, kwargs
return delayed_function
class _FuncWrapper:
""""Load the global configuration before calling the function."""
def __init__(self, function):
self.function = function
self.config = get_config()
update_wrapper(self, self.function)
def __call__(self, *args, **kwargs):
with config_context(**self.config):
return self.function(*args, **kwargs)