forked from 170010011/fr
302 lines
10 KiB
Python
302 lines
10 KiB
Python
|
"""
|
||
|
General tests for all estimators in sklearn.
|
||
|
"""
|
||
|
|
||
|
# Authors: Andreas Mueller <amueller@ais.uni-bonn.de>
|
||
|
# Gael Varoquaux gael.varoquaux@normalesup.org
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import os
|
||
|
import warnings
|
||
|
import sys
|
||
|
import re
|
||
|
import pkgutil
|
||
|
from inspect import isgenerator
|
||
|
from functools import partial
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.utils import all_estimators
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
from sklearn.exceptions import ConvergenceWarning
|
||
|
from sklearn.exceptions import FitFailedWarning
|
||
|
from sklearn.utils.estimator_checks import check_estimator
|
||
|
|
||
|
import sklearn
|
||
|
from sklearn.base import BiclusterMixin
|
||
|
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.linear_model._base import LinearClassifierMixin
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
from sklearn.linear_model import Ridge
|
||
|
from sklearn.model_selection import GridSearchCV
|
||
|
from sklearn.model_selection import RandomizedSearchCV
|
||
|
from sklearn.pipeline import make_pipeline
|
||
|
|
||
|
from sklearn.utils import IS_PYPY
|
||
|
from sklearn.utils._testing import SkipTest
|
||
|
from sklearn.utils.estimator_checks import (
|
||
|
_construct_instance,
|
||
|
_set_checking_parameters,
|
||
|
_get_check_estimator_ids,
|
||
|
check_class_weight_balanced_linear_classifier,
|
||
|
parametrize_with_checks,
|
||
|
check_n_features_in_after_fitting,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_all_estimator_no_base_class():
|
||
|
# test that all_estimators doesn't find abstract classes.
|
||
|
for name, Estimator in all_estimators():
|
||
|
msg = ("Base estimators such as {0} should not be included"
|
||
|
" in all_estimators").format(name)
|
||
|
assert not name.lower().startswith('base'), msg
|
||
|
|
||
|
|
||
|
def _sample_func(x, y=1):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("val, expected", [
|
||
|
(partial(_sample_func, y=1), "_sample_func(y=1)"),
|
||
|
(_sample_func, "_sample_func"),
|
||
|
(partial(_sample_func, 'world'), "_sample_func"),
|
||
|
(LogisticRegression(C=2.0), "LogisticRegression(C=2.0)"),
|
||
|
(LogisticRegression(random_state=1, solver='newton-cg',
|
||
|
class_weight='balanced', warm_start=True),
|
||
|
"LogisticRegression(class_weight='balanced',random_state=1,"
|
||
|
"solver='newton-cg',warm_start=True)")
|
||
|
])
|
||
|
def test_get_check_estimator_ids(val, expected):
|
||
|
assert _get_check_estimator_ids(val) == expected
|
||
|
|
||
|
|
||
|
def _tested_estimators():
|
||
|
for name, Estimator in all_estimators():
|
||
|
if issubclass(Estimator, BiclusterMixin):
|
||
|
continue
|
||
|
try:
|
||
|
estimator = _construct_instance(Estimator)
|
||
|
except SkipTest:
|
||
|
continue
|
||
|
|
||
|
yield estimator
|
||
|
|
||
|
|
||
|
@parametrize_with_checks(list(_tested_estimators()))
|
||
|
def test_estimators(estimator, check, request):
|
||
|
# Common tests for estimator instances
|
||
|
with ignore_warnings(category=(FutureWarning,
|
||
|
ConvergenceWarning,
|
||
|
UserWarning, FutureWarning)):
|
||
|
_set_checking_parameters(estimator)
|
||
|
check(estimator)
|
||
|
|
||
|
|
||
|
def test_check_estimator_generate_only():
|
||
|
all_instance_gen_checks = check_estimator(LogisticRegression(),
|
||
|
generate_only=True)
|
||
|
assert isgenerator(all_instance_gen_checks)
|
||
|
|
||
|
|
||
|
@ignore_warnings(category=(DeprecationWarning, FutureWarning))
|
||
|
# ignore deprecated open(.., 'U') in numpy distutils
|
||
|
def test_configure():
|
||
|
# Smoke test the 'configure' step of setup, this tests all the
|
||
|
# 'configure' functions in the setup.pys in scikit-learn
|
||
|
# This test requires Cython which is not necessarily there when running
|
||
|
# the tests of an installed version of scikit-learn or when scikit-learn
|
||
|
# is installed in editable mode by pip build isolation enabled.
|
||
|
pytest.importorskip("Cython")
|
||
|
cwd = os.getcwd()
|
||
|
setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..'))
|
||
|
setup_filename = os.path.join(setup_path, 'setup.py')
|
||
|
if not os.path.exists(setup_filename):
|
||
|
pytest.skip('setup.py not available')
|
||
|
# XXX unreached code as of v0.22
|
||
|
try:
|
||
|
os.chdir(setup_path)
|
||
|
old_argv = sys.argv
|
||
|
sys.argv = ['setup.py', 'config']
|
||
|
|
||
|
with warnings.catch_warnings():
|
||
|
# The configuration spits out warnings when not finding
|
||
|
# Blas/Atlas development headers
|
||
|
warnings.simplefilter('ignore', UserWarning)
|
||
|
with open('setup.py') as f:
|
||
|
exec(f.read(), dict(__name__='__main__'))
|
||
|
finally:
|
||
|
sys.argv = old_argv
|
||
|
os.chdir(cwd)
|
||
|
|
||
|
|
||
|
def _tested_linear_classifiers():
|
||
|
classifiers = all_estimators(type_filter='classifier')
|
||
|
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
for name, clazz in classifiers:
|
||
|
required_parameters = getattr(clazz, "_required_parameters", [])
|
||
|
if len(required_parameters):
|
||
|
# FIXME
|
||
|
continue
|
||
|
|
||
|
if ('class_weight' in clazz().get_params().keys() and
|
||
|
issubclass(clazz, LinearClassifierMixin)):
|
||
|
yield name, clazz
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("name, Classifier",
|
||
|
_tested_linear_classifiers())
|
||
|
def test_class_weight_balanced_linear_classifiers(name, Classifier):
|
||
|
check_class_weight_balanced_linear_classifier(name, Classifier)
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_import_all_consistency():
|
||
|
# Smoke test to check that any name in a __all__ list is actually defined
|
||
|
# in the namespace of the module or package.
|
||
|
pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.',
|
||
|
onerror=lambda _: None)
|
||
|
submods = [modname for _, modname, _ in pkgs]
|
||
|
for modname in submods + ['sklearn']:
|
||
|
if ".tests." in modname:
|
||
|
continue
|
||
|
if IS_PYPY and ('_svmlight_format_io' in modname or
|
||
|
'feature_extraction._hashing_fast' in modname):
|
||
|
continue
|
||
|
package = __import__(modname, fromlist="dummy")
|
||
|
for name in getattr(package, '__all__', ()):
|
||
|
assert hasattr(package, name),\
|
||
|
"Module '{0}' has no attribute '{1}'".format(modname, name)
|
||
|
|
||
|
|
||
|
def test_root_import_all_completeness():
|
||
|
EXCEPTIONS = ('utils', 'tests', 'base', 'setup', 'conftest')
|
||
|
for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__,
|
||
|
onerror=lambda _: None):
|
||
|
if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS:
|
||
|
continue
|
||
|
assert modname in sklearn.__all__
|
||
|
|
||
|
|
||
|
def test_all_tests_are_importable():
|
||
|
# Ensure that for each contentful subpackage, there is a test directory
|
||
|
# within it that is also a subpackage (i.e. a directory with __init__.py)
|
||
|
|
||
|
HAS_TESTS_EXCEPTIONS = re.compile(r'''(?x)
|
||
|
\.externals(\.|$)|
|
||
|
\.tests(\.|$)|
|
||
|
\._
|
||
|
''')
|
||
|
lookup = {name: ispkg
|
||
|
for _, name, ispkg
|
||
|
in pkgutil.walk_packages(sklearn.__path__, prefix='sklearn.')}
|
||
|
missing_tests = [name for name, ispkg in lookup.items()
|
||
|
if ispkg
|
||
|
and not HAS_TESTS_EXCEPTIONS.search(name)
|
||
|
and name + '.tests' not in lookup]
|
||
|
assert missing_tests == [], ('{0} do not have `tests` subpackages. '
|
||
|
'Perhaps they require '
|
||
|
'__init__.py or an add_subpackage directive '
|
||
|
'in the parent '
|
||
|
'setup.py'.format(missing_tests))
|
||
|
|
||
|
|
||
|
def test_class_support_removed():
|
||
|
# Make sure passing classes to check_estimator or parametrize_with_checks
|
||
|
# raises an error
|
||
|
|
||
|
msg = "Passing a class was deprecated.* isn't supported anymore"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
check_estimator(LogisticRegression)
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
parametrize_with_checks([LogisticRegression])
|
||
|
|
||
|
|
||
|
def _generate_search_cv_instances():
|
||
|
for SearchCV, (Estimator, param_grid) in zip(
|
||
|
[GridSearchCV, RandomizedSearchCV],
|
||
|
[
|
||
|
(Ridge, {"alpha": [0.1, 1.0]}),
|
||
|
(LogisticRegression, {"C": [0.1, 1.0]}),
|
||
|
],
|
||
|
):
|
||
|
yield SearchCV(Estimator(), param_grid)
|
||
|
|
||
|
for SearchCV, (Estimator, param_grid) in zip(
|
||
|
[GridSearchCV, RandomizedSearchCV],
|
||
|
[
|
||
|
(Ridge, {"ridge__alpha": [0.1, 1.0]}),
|
||
|
(LogisticRegression, {"logisticregression__C": [0.1, 1.0]}),
|
||
|
],
|
||
|
):
|
||
|
yield SearchCV(
|
||
|
make_pipeline(PCA(), Estimator()), param_grid
|
||
|
).set_params(error_score="raise")
|
||
|
|
||
|
|
||
|
@parametrize_with_checks(list(_generate_search_cv_instances()))
|
||
|
def test_search_cv(estimator, check, request):
|
||
|
# Common tests for SearchCV instances
|
||
|
# We have a separate test because those meta-estimators can accept a
|
||
|
# wide range of base estimators (classifiers, regressors, pipelines)
|
||
|
with ignore_warnings(
|
||
|
category=(
|
||
|
FutureWarning,
|
||
|
ConvergenceWarning,
|
||
|
UserWarning,
|
||
|
FutureWarning,
|
||
|
FitFailedWarning,
|
||
|
)
|
||
|
):
|
||
|
check(estimator)
|
||
|
|
||
|
|
||
|
# TODO: When more modules get added, we can remove it from this list to make
|
||
|
# sure it gets tested. After we finish each module we can move the checks
|
||
|
# into sklearn.utils.estimator_checks.check_n_features_in.
|
||
|
#
|
||
|
# check_estimators_partial_fit_n_features can either be removed or updated
|
||
|
# with the two more assertions:
|
||
|
# 1. `n_features_in_` is set during the first call to `partial_fit`.
|
||
|
# 2. More strict when it comes to the error message.
|
||
|
#
|
||
|
# check_classifiers_train would need to be updated with the error message
|
||
|
N_FEATURES_IN_AFTER_FIT_MODULES_TO_IGNORE = {
|
||
|
'calibration',
|
||
|
'compose',
|
||
|
'covariance',
|
||
|
'cross_decomposition',
|
||
|
'discriminant_analysis',
|
||
|
'ensemble',
|
||
|
'feature_extraction',
|
||
|
'feature_selection',
|
||
|
'gaussian_process',
|
||
|
'isotonic',
|
||
|
'linear_model',
|
||
|
'manifold',
|
||
|
'mixture',
|
||
|
'model_selection',
|
||
|
'multiclass',
|
||
|
'multioutput',
|
||
|
'naive_bayes',
|
||
|
'neighbors',
|
||
|
'pipeline',
|
||
|
'random_projection',
|
||
|
'semi_supervised',
|
||
|
'svm',
|
||
|
}
|
||
|
|
||
|
N_FEATURES_IN_AFTER_FIT_ESTIMATORS = [
|
||
|
est for est in _tested_estimators() if est.__module__.split('.')[1] not in
|
||
|
N_FEATURES_IN_AFTER_FIT_MODULES_TO_IGNORE
|
||
|
]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("estimator", N_FEATURES_IN_AFTER_FIT_ESTIMATORS,
|
||
|
ids=_get_check_estimator_ids)
|
||
|
def test_check_n_features_in_after_fitting(estimator):
|
||
|
_set_checking_parameters(estimator)
|
||
|
check_n_features_in_after_fitting(estimator.__class__.__name__, estimator)
|