fr/fr_env/lib/python3.8/site-packages/sklearn/externals/_lobpcg.py

728 lines
26 KiB
Python
Raw Permalink Normal View History

2021-03-02 18:34:59 +05:30
"""
scikit-learn copy of scipy/sparse/linalg/eigen/lobpcg/lobpcg.py v1.3.0
to be deleted after scipy 1.3.0 becomes a dependency in scikit-lean
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).
References
----------
.. [1] A. V. Knyazev (2001),
Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method.
SIAM Journal on Scientific Computing 23, no. 2,
pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124
.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007),
Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
in hypre and PETSc. https://arxiv.org/abs/0705.2626
.. [3] A. V. Knyazev's C and MATLAB implementations:
https://bitbucket.org/joseroman/blopex
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.linalg import (inv, eigh, cho_factor, cho_solve, cholesky, orth,
LinAlgError)
from scipy.sparse.linalg import aslinearoperator
__all__ = ['lobpcg']
def bmat(*args, **kwargs):
import warnings
with warnings.catch_warnings(record=True):
warnings.filterwarnings(
'ignore', '.*the matrix subclass is not the recommended way.*')
return np.bmat(*args, **kwargs)
def _save(ar, fileName):
# Used only when verbosity level > 10.
np.savetxt(fileName, ar)
def _report_nonhermitian(M, name):
"""
Report if `M` is not a hermitian matrix given its type.
"""
from scipy.linalg import norm
md = M - M.T.conj()
nmd = norm(md, 1)
tol = 10 * np.finfo(M.dtype).eps
tol = max(tol, tol * norm(M, 1))
if nmd > tol:
print('matrix %s of the type %s is not sufficiently Hermitian:'
% (name, M.dtype))
print('condition: %.e < %e' % (nmd, tol))
def _as2d(ar):
"""
If the input array is 2D return it, if it is 1D, append a dimension,
making it a column vector.
"""
if ar.ndim == 2:
return ar
else: # Assume 1!
aux = np.array(ar, copy=False)
aux.shape = (ar.shape[0], 1)
return aux
def _makeOperator(operatorInput, expectedShape):
"""Takes a dense numpy array or a sparse matrix or
a function and makes an operator performing matrix * blockvector
products."""
if operatorInput is None:
return None
else:
operator = aslinearoperator(operatorInput)
if operator.shape != expectedShape:
raise ValueError('operator has invalid shape')
return operator
def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY):
"""Changes blockVectorV in place."""
YBV = np.dot(blockVectorBY.T.conj(), blockVectorV)
tmp = cho_solve(factYBY, YBV)
blockVectorV -= np.dot(blockVectorY, tmp)
def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False):
"""B-orthonormalize the given block vector using Cholesky."""
normalization = blockVectorV.max(axis=0)+np.finfo(blockVectorV.dtype).eps
blockVectorV = blockVectorV / normalization
if blockVectorBV is None:
if B is not None:
blockVectorBV = B(blockVectorV)
else:
blockVectorBV = blockVectorV # Shared data!!!
else:
blockVectorBV = blockVectorBV / normalization
VBV = np.matmul(blockVectorV.T.conj(), blockVectorBV)
try:
# VBV is a Cholesky factor from now on...
VBV = cholesky(VBV, overwrite_a=True)
VBV = inv(VBV, overwrite_a=True)
blockVectorV = np.matmul(blockVectorV, VBV)
# blockVectorV = (cho_solve((VBV.T, True), blockVectorV.T)).T
if B is not None:
blockVectorBV = np.matmul(blockVectorBV, VBV)
# blockVectorBV = (cho_solve((VBV.T, True), blockVectorBV.T)).T
else:
blockVectorBV = None
except LinAlgError:
# raise ValueError('Cholesky has failed')
blockVectorV = None
blockVectorBV = None
VBV = None
if retInvR:
return blockVectorV, blockVectorBV, VBV, normalization
else:
return blockVectorV, blockVectorBV
def _get_indx(_lambda, num, largest):
"""Get `num` indices into `_lambda` depending on `largest` option."""
ii = np.argsort(_lambda)
if largest:
ii = ii[:-num-1:-1]
else:
ii = ii[:num]
return ii
def lobpcg(A, X,
B=None, M=None, Y=None,
tol=None, maxiter=20,
largest=True, verbosityLevel=0,
retLambdaHistory=False, retResidualNormsHistory=False):
"""Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)
LOBPCG is a preconditioned eigensolver for large symmetric positive
definite (SPD) generalized eigenproblems.
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}
The symmetric linear operator of the problem, usually a
sparse matrix. Often called the "stiffness matrix".
X : ndarray, float32 or float64
Initial approximation to the ``k`` eigenvectors (non-sparse). If `A`
has ``shape=(n,n)`` then `X` should have shape ``shape=(n,k)``.
B : {dense matrix, sparse matrix, LinearOperator}, optional
The right hand side operator in a generalized eigenproblem.
By default, ``B = Identity``. Often called the "mass matrix".
M : {dense matrix, sparse matrix, LinearOperator}, optional
Preconditioner to `A`; by default ``M = Identity``.
`M` should approximate the inverse of `A`.
Y : ndarray, float32 or float64, optional
n-by-sizeY matrix of constraints (non-sparse), sizeY < n
The iterations will be performed in the B-orthogonal complement
of the column-space of Y. Y must be full rank.
tol : scalar, optional
Solver tolerance (stopping criterion).
The default is ``tol=n*sqrt(eps)``.
maxiter : int, optional
Maximum number of iterations. The default is ``maxiter=min(n, 20)``.
largest : bool, optional
When True, solve for the largest eigenvalues, otherwise the smallest.
verbosityLevel : int, optional
Controls solver output. The default is ``verbosityLevel=0``.
retLambdaHistory : bool, optional
Whether to return eigenvalue history. Default is False.
retResidualNormsHistory : bool, optional
Whether to return history of residual norms. Default is False.
Returns
-------
w : ndarray
Array of ``k`` eigenvalues
v : ndarray
An array of ``k`` eigenvectors. `v` has the same shape as `X`.
lambdas : list of ndarray, optional
The eigenvalue history, if `retLambdaHistory` is True.
rnorms : list of ndarray, optional
The history of residual norms, if `retResidualNormsHistory` is True.
Notes
-----
If both ``retLambdaHistory`` and ``retResidualNormsHistory`` are True,
the return tuple has the following format
``(lambda, V, lambda history, residual norms history)``.
In the following ``n`` denotes the matrix size and ``m`` the number
of required eigenvalues (smallest or largest).
The LOBPCG code internally solves eigenproblems of the size ``3m`` on every
iteration by calling the "standard" dense eigensolver, so if ``m`` is not
small enough compared to ``n``, it does not make sense to call the LOBPCG
code, but rather one should use the "standard" eigensolver, e.g. numpy or
scipy function in this case.
If one calls the LOBPCG algorithm for ``5m > n``, it will most likely break
internally, so the code tries to call the standard function instead.
It is not that ``n`` should be large for the LOBPCG to work, but rather the
ratio ``n / m`` should be large. It you call LOBPCG with ``m=1``
and ``n=10``, it works though ``n`` is small. The method is intended
for extremely large ``n / m``, see e.g., reference [28] in
https://arxiv.org/abs/0705.2626
The convergence speed depends basically on two factors:
1. How well relatively separated the seeking eigenvalues are from the rest
of the eigenvalues. One can try to vary ``m`` to make this better.
2. How well conditioned the problem is. This can be changed by using proper
preconditioning. For example, a rod vibration test problem (under tests
directory) is ill-conditioned for large ``n``, so convergence will be
slow, unless efficient preconditioning is used. For this specific
problem, a good simple preconditioner function would be a linear solve
for `A`, which is easy to code since A is tridiagonal.
References
----------
.. [1] A. V. Knyazev (2001),
Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method.
SIAM Journal on Scientific Computing 23, no. 2,
pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124
.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov
(2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers
(BLOPEX) in hypre and PETSc. https://arxiv.org/abs/0705.2626
.. [3] A. V. Knyazev's C and MATLAB implementations:
https://bitbucket.org/joseroman/blopex
Examples
--------
Solve ``A x = lambda x`` with constraints and preconditioning.
>>> import numpy as np
>>> from scipy.sparse import spdiags, issparse
>>> from scipy.sparse.linalg import lobpcg, LinearOperator
>>> n = 100
>>> vals = np.arange(1, n + 1)
>>> A = spdiags(vals, 0, n, n)
>>> A.toarray()
array([[ 1., 0., 0., ..., 0., 0., 0.],
[ 0., 2., 0., ..., 0., 0., 0.],
[ 0., 0., 3., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 98., 0., 0.],
[ 0., 0., 0., ..., 0., 99., 0.],
[ 0., 0., 0., ..., 0., 0., 100.]])
Constraints:
>>> Y = np.eye(n, 3)
Initial guess for eigenvectors, should have linearly independent
columns. Column dimension = number of requested eigenvalues.
>>> X = np.random.rand(n, 3)
Preconditioner in the inverse of A in this example:
>>> invA = spdiags([1./vals], 0, n, n)
The preconditiner must be defined by a function:
>>> def precond( x ):
... return invA @ x
The argument x of the preconditioner function is a matrix inside `lobpcg`,
thus the use of matrix-matrix product ``@``.
The preconditioner function is passed to lobpcg as a `LinearOperator`:
>>> M = LinearOperator(matvec=precond, matmat=precond,
... shape=(n, n), dtype=float)
Let us now solve the eigenvalue problem for the matrix A:
>>> eigenvalues, _ = lobpcg(A, X, Y=Y, M=M, largest=False)
>>> eigenvalues
array([4., 5., 6.])
Note that the vectors passed in Y are the eigenvectors of the 3 smallest
eigenvalues. The results returned are orthogonal to those.
"""
blockVectorX = X
blockVectorY = Y
residualTolerance = tol
maxIterations = maxiter
if blockVectorY is not None:
sizeY = blockVectorY.shape[1]
else:
sizeY = 0
# Block size.
if len(blockVectorX.shape) != 2:
raise ValueError('expected rank-2 array for argument X')
n, sizeX = blockVectorX.shape
if verbosityLevel:
aux = "Solving "
if B is None:
aux += "standard"
else:
aux += "generalized"
aux += " eigenvalue problem with"
if M is None:
aux += "out"
aux += " preconditioning\n\n"
aux += "matrix size %d\n" % n
aux += "block size %d\n\n" % sizeX
if blockVectorY is None:
aux += "No constraints\n\n"
else:
if sizeY > 1:
aux += "%d constraints\n\n" % sizeY
else:
aux += "%d constraint\n\n" % sizeY
print(aux)
A = _makeOperator(A, (n, n))
B = _makeOperator(B, (n, n))
M = _makeOperator(M, (n, n))
if (n - sizeY) < (5 * sizeX):
# warn('The problem size is small compared to the block size.' \
# ' Using dense eigensolver instead of LOBPCG.')
sizeX = min(sizeX, n)
if blockVectorY is not None:
raise NotImplementedError('The dense eigensolver '
'does not support constraints.')
# Define the closed range of indices of eigenvalues to return.
if largest:
eigvals = (n - sizeX, n-1)
else:
eigvals = (0, sizeX-1)
A_dense = A(np.eye(n, dtype=A.dtype))
B_dense = None if B is None else B(np.eye(n, dtype=B.dtype))
vals, vecs = eigh(A_dense, B_dense, eigvals=eigvals,
check_finite=False)
if largest:
# Reverse order to be compatible with eigs() in 'LM' mode.
vals = vals[::-1]
vecs = vecs[:, ::-1]
return vals, vecs
if (residualTolerance is None) or (residualTolerance <= 0.0):
residualTolerance = np.sqrt(1e-15) * n
# Apply constraints to X.
if blockVectorY is not None:
if B is not None:
blockVectorBY = B(blockVectorY)
else:
blockVectorBY = blockVectorY
# gramYBY is a dense array.
gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY)
try:
# gramYBY is a Cholesky factor from now on...
gramYBY = cho_factor(gramYBY)
except LinAlgError as e:
raise ValueError('cannot handle linearly dependent constraints') from e
_applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY)
##
# B-orthonormalize X.
blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX)
##
# Compute the initial Ritz vectors: solve the eigenproblem.
blockVectorAX = A(blockVectorX)
gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
_lambda, eigBlockVector = eigh(gramXAX, check_finite=False)
ii = _get_indx(_lambda, sizeX, largest)
_lambda = _lambda[ii]
eigBlockVector = np.asarray(eigBlockVector[:, ii])
blockVectorX = np.dot(blockVectorX, eigBlockVector)
blockVectorAX = np.dot(blockVectorAX, eigBlockVector)
if B is not None:
blockVectorBX = np.dot(blockVectorBX, eigBlockVector)
##
# Active index set.
activeMask = np.ones((sizeX,), dtype=bool)
lambdaHistory = [_lambda]
residualNormsHistory = []
previousBlockSize = sizeX
ident = np.eye(sizeX, dtype=A.dtype)
ident0 = np.eye(sizeX, dtype=A.dtype)
##
# Main iteration loop.
blockVectorP = None # set during iteration
blockVectorAP = None
blockVectorBP = None
iterationNumber = -1
restart = True
explicitGramFlag = False
while iterationNumber < maxIterations:
iterationNumber += 1
if verbosityLevel > 0:
print('iteration %d' % iterationNumber)
if B is not None:
aux = blockVectorBX * _lambda[np.newaxis, :]
else:
aux = blockVectorX * _lambda[np.newaxis, :]
blockVectorR = blockVectorAX - aux
aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
residualNorms = np.sqrt(aux)
residualNormsHistory.append(residualNorms)
ii = np.where(residualNorms > residualTolerance, True, False)
activeMask = activeMask & ii
if verbosityLevel > 2:
print(activeMask)
currentBlockSize = activeMask.sum()
if currentBlockSize != previousBlockSize:
previousBlockSize = currentBlockSize
ident = np.eye(currentBlockSize, dtype=A.dtype)
if currentBlockSize == 0:
break
if verbosityLevel > 0:
print('current block size:', currentBlockSize)
print('eigenvalue:', _lambda)
print('residual norms:', residualNorms)
if verbosityLevel > 10:
print(eigBlockVector)
activeBlockVectorR = _as2d(blockVectorR[:, activeMask])
if iterationNumber > 0:
activeBlockVectorP = _as2d(blockVectorP[:, activeMask])
activeBlockVectorAP = _as2d(blockVectorAP[:, activeMask])
if B is not None:
activeBlockVectorBP = _as2d(blockVectorBP[:, activeMask])
if M is not None:
# Apply preconditioner T to the active residuals.
activeBlockVectorR = M(activeBlockVectorR)
##
# Apply constraints to the preconditioned residuals.
if blockVectorY is not None:
_applyConstraints(activeBlockVectorR,
gramYBY, blockVectorBY, blockVectorY)
##
# B-orthogonalize the preconditioned residuals to X.
if B is not None:
activeBlockVectorR = activeBlockVectorR - \
np.matmul(blockVectorX,
np.matmul(blockVectorBX.T.conj(),
activeBlockVectorR))
else:
activeBlockVectorR = activeBlockVectorR - \
np.matmul(blockVectorX,
np.matmul(blockVectorX.T.conj(),
activeBlockVectorR))
##
# B-orthonormalize the preconditioned residuals.
aux = _b_orthonormalize(B, activeBlockVectorR)
activeBlockVectorR, activeBlockVectorBR = aux
activeBlockVectorAR = A(activeBlockVectorR)
if iterationNumber > 0:
if B is not None:
aux = _b_orthonormalize(B, activeBlockVectorP,
activeBlockVectorBP, retInvR=True)
activeBlockVectorP, activeBlockVectorBP, invR, normal = aux
else:
aux = _b_orthonormalize(B, activeBlockVectorP, retInvR=True)
activeBlockVectorP, _, invR, normal = aux
# Function _b_orthonormalize returns None if Cholesky fails
if activeBlockVectorP is not None:
activeBlockVectorAP = activeBlockVectorAP / normal
activeBlockVectorAP = np.dot(activeBlockVectorAP, invR)
restart = False
else:
restart = True
##
# Perform the Rayleigh Ritz Procedure:
# Compute symmetric Gram matrices:
if activeBlockVectorAR.dtype == 'float32':
myeps = 1
elif activeBlockVectorR.dtype == 'float32':
myeps = 1e-4
else:
myeps = 1e-8
if residualNorms.max() > myeps and not explicitGramFlag:
explicitGramFlag = False
else:
# Once explicitGramFlag, forever explicitGramFlag.
explicitGramFlag = True
# Shared memory assingments to simplify the code
if B is None:
blockVectorBX = blockVectorX
activeBlockVectorBR = activeBlockVectorR
if not restart:
activeBlockVectorBP = activeBlockVectorP
# Common submatrices:
gramXAR = np.dot(blockVectorX.T.conj(), activeBlockVectorAR)
gramRAR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR)
if explicitGramFlag:
gramRAR = (gramRAR + gramRAR.T.conj())/2
gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
gramXAX = (gramXAX + gramXAX.T.conj())/2
gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX)
gramRBR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBR)
gramXBR = np.dot(blockVectorX.T.conj(), activeBlockVectorBR)
else:
gramXAX = np.diag(_lambda)
gramXBX = ident0
gramRBR = ident
gramXBR = np.zeros((sizeX, currentBlockSize), dtype=A.dtype)
def _handle_gramA_gramB_verbosity(gramA, gramB):
if verbosityLevel > 0:
_report_nonhermitian(gramA, 'gramA')
_report_nonhermitian(gramB, 'gramB')
if verbosityLevel > 10:
# Note: not documented, but leave it in here for now
np.savetxt('gramA.txt', gramA)
np.savetxt('gramB.txt', gramB)
if not restart:
gramXAP = np.dot(blockVectorX.T.conj(), activeBlockVectorAP)
gramRAP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP)
gramPAP = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP)
gramXBP = np.dot(blockVectorX.T.conj(), activeBlockVectorBP)
gramRBP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP)
if explicitGramFlag:
gramPAP = (gramPAP + gramPAP.T.conj())/2
gramPBP = np.dot(activeBlockVectorP.T.conj(),
activeBlockVectorBP)
else:
gramPBP = ident
gramA = bmat([[gramXAX, gramXAR, gramXAP],
[gramXAR.T.conj(), gramRAR, gramRAP],
[gramXAP.T.conj(), gramRAP.T.conj(), gramPAP]])
gramB = bmat([[gramXBX, gramXBR, gramXBP],
[gramXBR.T.conj(), gramRBR, gramRBP],
[gramXBP.T.conj(), gramRBP.T.conj(), gramPBP]])
_handle_gramA_gramB_verbosity(gramA, gramB)
try:
_lambda, eigBlockVector = eigh(gramA, gramB,
check_finite=False)
except LinAlgError:
# try again after dropping the direction vectors P from RR
restart = True
if restart:
gramA = bmat([[gramXAX, gramXAR],
[gramXAR.T.conj(), gramRAR]])
gramB = bmat([[gramXBX, gramXBR],
[gramXBR.T.conj(), gramRBR]])
_handle_gramA_gramB_verbosity(gramA, gramB)
try:
_lambda, eigBlockVector = eigh(gramA, gramB,
check_finite=False)
except LinAlgError as e:
raise ValueError('eigh has failed in lobpcg iterations') from e
ii = _get_indx(_lambda, sizeX, largest)
if verbosityLevel > 10:
print(ii)
print(_lambda)
_lambda = _lambda[ii]
eigBlockVector = eigBlockVector[:, ii]
lambdaHistory.append(_lambda)
if verbosityLevel > 10:
print('lambda:', _lambda)
# # Normalize eigenvectors!
# aux = np.sum( eigBlockVector.conj() * eigBlockVector, 0 )
# eigVecNorms = np.sqrt( aux )
# eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis, :]
# eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector )
if verbosityLevel > 10:
print(eigBlockVector)
# Compute Ritz vectors.
if B is not None:
if not restart:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
pp += np.dot(activeBlockVectorP, eigBlockVectorP)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
app += np.dot(activeBlockVectorAP, eigBlockVectorP)
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
bpp += np.dot(activeBlockVectorBP, eigBlockVectorP)
else:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
if verbosityLevel > 10:
print(pp)
print(app)
print(bpp)
blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp
blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp
else:
if not restart:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
pp += np.dot(activeBlockVectorP, eigBlockVectorP)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
app += np.dot(activeBlockVectorAP, eigBlockVectorP)
else:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
if verbosityLevel > 10:
print(pp)
print(app)
blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
blockVectorP, blockVectorAP = pp, app
if B is not None:
aux = blockVectorBX * _lambda[np.newaxis, :]
else:
aux = blockVectorX * _lambda[np.newaxis, :]
blockVectorR = blockVectorAX - aux
aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
residualNorms = np.sqrt(aux)
# Future work: Need to add Postprocessing here:
# Making sure eigenvectors "exactly" satisfy the blockVectorY constrains?
# Making sure eigenvecotrs are "exactly" othonormalized by final "exact" RR
# Computing the actual true residuals
if verbosityLevel > 0:
print('final eigenvalue:', _lambda)
print('final residual norms:', residualNorms)
if retLambdaHistory:
if retResidualNormsHistory:
return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
else:
return _lambda, blockVectorX, lambdaHistory
else:
if retResidualNormsHistory:
return _lambda, blockVectorX, residualNormsHistory
else:
return _lambda, blockVectorX