forked from 170010011/fr
113 lines
4.4 KiB
Python
113 lines
4.4 KiB
Python
|
"""
|
||
|
Machine learning module for Python
|
||
|
==================================
|
||
|
|
||
|
sklearn is a Python module integrating classical machine
|
||
|
learning algorithms in the tightly-knit world of scientific Python
|
||
|
packages (numpy, scipy, matplotlib).
|
||
|
|
||
|
It aims to provide simple and efficient solutions to learning problems
|
||
|
that are accessible to everybody and reusable in various contexts:
|
||
|
machine-learning as a versatile tool for science and engineering.
|
||
|
|
||
|
See http://scikit-learn.org for complete documentation.
|
||
|
"""
|
||
|
import sys
|
||
|
import logging
|
||
|
import os
|
||
|
import random
|
||
|
|
||
|
|
||
|
from ._config import get_config, set_config, config_context
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
# PEP0440 compatible formatted version, see:
|
||
|
# https://www.python.org/dev/peps/pep-0440/
|
||
|
#
|
||
|
# Generic release markers:
|
||
|
# X.Y
|
||
|
# X.Y.Z # For bugfix releases
|
||
|
#
|
||
|
# Admissible pre-release markers:
|
||
|
# X.YaN # Alpha release
|
||
|
# X.YbN # Beta release
|
||
|
# X.YrcN # Release Candidate
|
||
|
# X.Y # Final release
|
||
|
#
|
||
|
# Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer.
|
||
|
# 'X.Y.dev0' is the canonical version of 'X.Y.dev'
|
||
|
#
|
||
|
__version__ = '0.24.1'
|
||
|
|
||
|
|
||
|
# On OSX, we can get a runtime error due to multiple OpenMP libraries loaded
|
||
|
# simultaneously. This can happen for instance when calling BLAS inside a
|
||
|
# prange. Setting the following environment variable allows multiple OpenMP
|
||
|
# libraries to be loaded. It should not degrade performances since we manually
|
||
|
# take care of potential over-subcription performance issues, in sections of
|
||
|
# the code where nested OpenMP loops can happen, by dynamically reconfiguring
|
||
|
# the inner OpenMP runtime to temporarily disable it while under the scope of
|
||
|
# the outer OpenMP parallel section.
|
||
|
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "True")
|
||
|
|
||
|
# Workaround issue discovered in intel-openmp 2019.5:
|
||
|
# https://github.com/ContinuumIO/anaconda-issues/issues/11294
|
||
|
os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE")
|
||
|
|
||
|
try:
|
||
|
# This variable is injected in the __builtins__ by the build
|
||
|
# process. It is used to enable importing subpackages of sklearn when
|
||
|
# the binaries are not built
|
||
|
# mypy error: Cannot determine type of '__SKLEARN_SETUP__'
|
||
|
__SKLEARN_SETUP__ # type: ignore
|
||
|
except NameError:
|
||
|
__SKLEARN_SETUP__ = False
|
||
|
|
||
|
if __SKLEARN_SETUP__:
|
||
|
sys.stderr.write('Partial import of sklearn during the build process.\n')
|
||
|
# We are not importing the rest of scikit-learn during the build
|
||
|
# process, as it may not be compiled yet
|
||
|
else:
|
||
|
# `_distributor_init` allows distributors to run custom init code.
|
||
|
# For instance, for the Windows wheel, this is used to pre-load the
|
||
|
# vcomp shared library runtime for OpenMP embedded in the sklearn/.libs
|
||
|
# sub-folder.
|
||
|
# It is necessary to do this prior to importing show_versions as the
|
||
|
# later is linked to the OpenMP runtime to make it possible to introspect
|
||
|
# it and importing it first would fail if the OpenMP dll cannot be found.
|
||
|
from . import _distributor_init # noqa: F401
|
||
|
from . import __check_build # noqa: F401
|
||
|
from .base import clone
|
||
|
from .utils._show_versions import show_versions
|
||
|
|
||
|
__all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition',
|
||
|
'datasets', 'decomposition', 'dummy', 'ensemble', 'exceptions',
|
||
|
'experimental', 'externals', 'feature_extraction',
|
||
|
'feature_selection', 'gaussian_process', 'inspection',
|
||
|
'isotonic', 'kernel_approximation', 'kernel_ridge',
|
||
|
'linear_model', 'manifold', 'metrics', 'mixture',
|
||
|
'model_selection', 'multiclass', 'multioutput',
|
||
|
'naive_bayes', 'neighbors', 'neural_network', 'pipeline',
|
||
|
'preprocessing', 'random_projection', 'semi_supervised',
|
||
|
'svm', 'tree', 'discriminant_analysis', 'impute', 'compose',
|
||
|
# Non-modules:
|
||
|
'clone', 'get_config', 'set_config', 'config_context',
|
||
|
'show_versions']
|
||
|
|
||
|
|
||
|
def setup_module(module):
|
||
|
"""Fixture for the tests to assure globally controllable seeding of RNGs"""
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
# Check if a random seed exists in the environment, if not create one.
|
||
|
_random_seed = os.environ.get('SKLEARN_SEED', None)
|
||
|
if _random_seed is None:
|
||
|
_random_seed = np.random.uniform() * np.iinfo(np.int32).max
|
||
|
_random_seed = int(_random_seed)
|
||
|
print("I: Seeding RNGs with %r" % _random_seed)
|
||
|
np.random.seed(_random_seed)
|
||
|
random.seed(_random_seed)
|