forked from 170010011/fr
75 lines
2.5 KiB
Python
75 lines
2.5 KiB
Python
|
import numpy as np
|
||
|
|
||
|
import scipy.ndimage as ndi
|
||
|
|
||
|
from ..util import img_as_float
|
||
|
from ..color import rgb2lab
|
||
|
|
||
|
from ._quickshift_cy import _quickshift_cython
|
||
|
|
||
|
|
||
|
def quickshift(image, ratio=1.0, kernel_size=5, max_dist=10,
|
||
|
return_tree=False, sigma=0, convert2lab=True, random_seed=42):
|
||
|
"""Segments image using quickshift clustering in Color-(x,y) space.
|
||
|
|
||
|
Produces an oversegmentation of the image using the quickshift mode-seeking
|
||
|
algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : (width, height, channels) ndarray
|
||
|
Input image.
|
||
|
ratio : float, optional, between 0 and 1
|
||
|
Balances color-space proximity and image-space proximity.
|
||
|
Higher values give more weight to color-space.
|
||
|
kernel_size : float, optional
|
||
|
Width of Gaussian kernel used in smoothing the
|
||
|
sample density. Higher means fewer clusters.
|
||
|
max_dist : float, optional
|
||
|
Cut-off point for data distances.
|
||
|
Higher means fewer clusters.
|
||
|
return_tree : bool, optional
|
||
|
Whether to return the full segmentation hierarchy tree and distances.
|
||
|
sigma : float, optional
|
||
|
Width for Gaussian smoothing as preprocessing. Zero means no smoothing.
|
||
|
convert2lab : bool, optional
|
||
|
Whether the input should be converted to Lab colorspace prior to
|
||
|
segmentation. For this purpose, the input is assumed to be RGB.
|
||
|
random_seed : int, optional
|
||
|
Random seed used for breaking ties.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
segment_mask : (width, height) ndarray
|
||
|
Integer mask indicating segment labels.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The authors advocate to convert the image to Lab color space prior to
|
||
|
segmentation, though this is not strictly necessary. For this to work, the
|
||
|
image must be given in RGB format.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Quick shift and kernel methods for mode seeking,
|
||
|
Vedaldi, A. and Soatto, S.
|
||
|
European Conference on Computer Vision, 2008
|
||
|
"""
|
||
|
|
||
|
image = img_as_float(np.atleast_3d(image))
|
||
|
if convert2lab:
|
||
|
if image.shape[2] != 3:
|
||
|
ValueError("Only RGB images can be converted to Lab space.")
|
||
|
image = rgb2lab(image)
|
||
|
|
||
|
if kernel_size < 1:
|
||
|
raise ValueError("`kernel_size` should be >= 1.")
|
||
|
|
||
|
image = ndi.gaussian_filter(image, [sigma, sigma, 0])
|
||
|
image = np.ascontiguousarray(image * ratio)
|
||
|
|
||
|
segment_mask = _quickshift_cython(
|
||
|
image, kernel_size=kernel_size, max_dist=max_dist,
|
||
|
return_tree=return_tree, random_seed=random_seed)
|
||
|
return segment_mask
|