forked from 170010011/fr
161 lines
4.9 KiB
Python
161 lines
4.9 KiB
Python
|
import numpy as np
|
||
|
from ..util.dtype import dtype_range
|
||
|
from .._shared.utils import warn, check_shape_equality
|
||
|
|
||
|
__all__ = ['mean_squared_error',
|
||
|
'normalized_root_mse',
|
||
|
'peak_signal_noise_ratio',
|
||
|
]
|
||
|
|
||
|
|
||
|
def _as_floats(image0, image1):
|
||
|
"""
|
||
|
Promote im1, im2 to nearest appropriate floating point precision.
|
||
|
"""
|
||
|
float_type = np.result_type(image0.dtype, image1.dtype, np.float32)
|
||
|
image0 = np.asarray(image0, dtype=float_type)
|
||
|
image1 = np.asarray(image1, dtype=float_type)
|
||
|
return image0, image1
|
||
|
|
||
|
|
||
|
def mean_squared_error(image0, image1):
|
||
|
"""
|
||
|
Compute the mean-squared error between two images.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image0, image1 : ndarray
|
||
|
Images. Any dimensionality, must have same shape.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mse : float
|
||
|
The mean-squared error (MSE) metric.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionchanged:: 0.16
|
||
|
This function was renamed from ``skimage.measure.compare_mse`` to
|
||
|
``skimage.metrics.mean_squared_error``.
|
||
|
|
||
|
"""
|
||
|
check_shape_equality(image0, image1)
|
||
|
image0, image1 = _as_floats(image0, image1)
|
||
|
return np.mean((image0 - image1) ** 2, dtype=np.float64)
|
||
|
|
||
|
|
||
|
def normalized_root_mse(image_true, image_test, *, normalization='euclidean'):
|
||
|
"""
|
||
|
Compute the normalized root mean-squared error (NRMSE) between two
|
||
|
images.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image_true : ndarray
|
||
|
Ground-truth image, same shape as im_test.
|
||
|
image_test : ndarray
|
||
|
Test image.
|
||
|
normalization : {'euclidean', 'min-max', 'mean'}, optional
|
||
|
Controls the normalization method to use in the denominator of the
|
||
|
NRMSE. There is no standard method of normalization across the
|
||
|
literature [1]_. The methods available here are as follows:
|
||
|
|
||
|
- 'euclidean' : normalize by the averaged Euclidean norm of
|
||
|
``im_true``::
|
||
|
|
||
|
NRMSE = RMSE * sqrt(N) / || im_true ||
|
||
|
|
||
|
where || . || denotes the Frobenius norm and ``N = im_true.size``.
|
||
|
This result is equivalent to::
|
||
|
|
||
|
NRMSE = || im_true - im_test || / || im_true ||.
|
||
|
|
||
|
- 'min-max' : normalize by the intensity range of ``im_true``.
|
||
|
- 'mean' : normalize by the mean of ``im_true``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nrmse : float
|
||
|
The NRMSE metric.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionchanged:: 0.16
|
||
|
This function was renamed from ``skimage.measure.compare_nrmse`` to
|
||
|
``skimage.metrics.normalized_root_mse``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Root-mean-square_deviation
|
||
|
|
||
|
"""
|
||
|
check_shape_equality(image_true, image_test)
|
||
|
image_true, image_test = _as_floats(image_true, image_test)
|
||
|
|
||
|
# Ensure that both 'Euclidean' and 'euclidean' match
|
||
|
normalization = normalization.lower()
|
||
|
if normalization == 'euclidean':
|
||
|
denom = np.sqrt(np.mean((image_true * image_true), dtype=np.float64))
|
||
|
elif normalization == 'min-max':
|
||
|
denom = image_true.max() - image_true.min()
|
||
|
elif normalization == 'mean':
|
||
|
denom = image_true.mean()
|
||
|
else:
|
||
|
raise ValueError("Unsupported norm_type")
|
||
|
return np.sqrt(mean_squared_error(image_true, image_test)) / denom
|
||
|
|
||
|
|
||
|
def peak_signal_noise_ratio(image_true, image_test, *, data_range=None):
|
||
|
"""
|
||
|
Compute the peak signal to noise ratio (PSNR) for an image.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image_true : ndarray
|
||
|
Ground-truth image, same shape as im_test.
|
||
|
image_test : ndarray
|
||
|
Test image.
|
||
|
data_range : int, optional
|
||
|
The data range of the input image (distance between minimum and
|
||
|
maximum possible values). By default, this is estimated from the image
|
||
|
data-type.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
psnr : float
|
||
|
The PSNR metric.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionchanged:: 0.16
|
||
|
This function was renamed from ``skimage.measure.compare_psnr`` to
|
||
|
``skimage.metrics.peak_signal_noise_ratio``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
|
||
|
|
||
|
"""
|
||
|
check_shape_equality(image_true, image_test)
|
||
|
|
||
|
if data_range is None:
|
||
|
if image_true.dtype != image_test.dtype:
|
||
|
warn("Inputs have mismatched dtype. Setting data_range based on "
|
||
|
"im_true.", stacklevel=2)
|
||
|
dmin, dmax = dtype_range[image_true.dtype.type]
|
||
|
true_min, true_max = np.min(image_true), np.max(image_true)
|
||
|
if true_max > dmax or true_min < dmin:
|
||
|
raise ValueError(
|
||
|
"im_true has intensity values outside the range expected for "
|
||
|
"its data type. Please manually specify the data_range")
|
||
|
if true_min >= 0:
|
||
|
# most common case (255 for uint8, 1 for float)
|
||
|
data_range = dmax
|
||
|
else:
|
||
|
data_range = dmax - dmin
|
||
|
|
||
|
image_true, image_test = _as_floats(image_true, image_test)
|
||
|
|
||
|
err = mean_squared_error(image_true, image_test)
|
||
|
return 10 * np.log10((data_range ** 2) / err)
|