forked from 170010011/fr
88 lines
3.0 KiB
Python
88 lines
3.0 KiB
Python
|
import numpy as np
|
||
|
from ..util import view_as_blocks
|
||
|
|
||
|
|
||
|
def block_reduce(image, block_size, func=np.sum, cval=0, func_kwargs=None):
|
||
|
"""Downsample image by applying function `func` to local blocks.
|
||
|
|
||
|
This function is useful for max and mean pooling, for example.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : ndarray
|
||
|
N-dimensional input image.
|
||
|
block_size : array_like
|
||
|
Array containing down-sampling integer factor along each axis.
|
||
|
func : callable
|
||
|
Function object which is used to calculate the return value for each
|
||
|
local block. This function must implement an ``axis`` parameter.
|
||
|
Primary functions are ``numpy.sum``, ``numpy.min``, ``numpy.max``,
|
||
|
``numpy.mean`` and ``numpy.median``. See also `func_kwargs`.
|
||
|
cval : float
|
||
|
Constant padding value if image is not perfectly divisible by the
|
||
|
block size.
|
||
|
func_kwargs : dict
|
||
|
Keyword arguments passed to `func`. Notably useful for passing dtype
|
||
|
argument to ``np.mean``. Takes dictionary of inputs, e.g.:
|
||
|
``func_kwargs={'dtype': np.float16})``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
image : ndarray
|
||
|
Down-sampled image with same number of dimensions as input image.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from skimage.measure import block_reduce
|
||
|
>>> image = np.arange(3*3*4).reshape(3, 3, 4)
|
||
|
>>> image # doctest: +NORMALIZE_WHITESPACE
|
||
|
array([[[ 0, 1, 2, 3],
|
||
|
[ 4, 5, 6, 7],
|
||
|
[ 8, 9, 10, 11]],
|
||
|
[[12, 13, 14, 15],
|
||
|
[16, 17, 18, 19],
|
||
|
[20, 21, 22, 23]],
|
||
|
[[24, 25, 26, 27],
|
||
|
[28, 29, 30, 31],
|
||
|
[32, 33, 34, 35]]])
|
||
|
>>> block_reduce(image, block_size=(3, 3, 1), func=np.mean)
|
||
|
array([[[16., 17., 18., 19.]]])
|
||
|
>>> image_max1 = block_reduce(image, block_size=(1, 3, 4), func=np.max)
|
||
|
>>> image_max1 # doctest: +NORMALIZE_WHITESPACE
|
||
|
array([[[11]],
|
||
|
[[23]],
|
||
|
[[35]]])
|
||
|
>>> image_max2 = block_reduce(image, block_size=(3, 1, 4), func=np.max)
|
||
|
>>> image_max2 # doctest: +NORMALIZE_WHITESPACE
|
||
|
array([[[27],
|
||
|
[31],
|
||
|
[35]]])
|
||
|
"""
|
||
|
|
||
|
if len(block_size) != image.ndim:
|
||
|
raise ValueError("`block_size` must have the same length "
|
||
|
"as `image.shape`.")
|
||
|
|
||
|
if func_kwargs is None:
|
||
|
func_kwargs = {}
|
||
|
|
||
|
pad_width = []
|
||
|
for i in range(len(block_size)):
|
||
|
if block_size[i] < 1:
|
||
|
raise ValueError("Down-sampling factors must be >= 1. Use "
|
||
|
"`skimage.transform.resize` to up-sample an "
|
||
|
"image.")
|
||
|
if image.shape[i] % block_size[i] != 0:
|
||
|
after_width = block_size[i] - (image.shape[i] % block_size[i])
|
||
|
else:
|
||
|
after_width = 0
|
||
|
pad_width.append((0, after_width))
|
||
|
|
||
|
image = np.pad(image, pad_width=pad_width, mode='constant',
|
||
|
constant_values=cval)
|
||
|
|
||
|
blocked = view_as_blocks(image, block_size)
|
||
|
|
||
|
return func(blocked, axis=tuple(range(image.ndim, blocked.ndim)),
|
||
|
**func_kwargs)
|