forked from 170010011/fr
82 lines
2.4 KiB
Python
82 lines
2.4 KiB
Python
|
import numpy as np
|
||
|
|
||
|
__all__ = ['load_sift', 'load_surf']
|
||
|
|
||
|
|
||
|
def _sift_read(filelike, mode='SIFT'):
|
||
|
"""Read SIFT or SURF features from externally generated file.
|
||
|
|
||
|
This routine reads SIFT or SURF files generated by binary utilities from
|
||
|
http://people.cs.ubc.ca/~lowe/keypoints/ and
|
||
|
http://www.vision.ee.ethz.ch/~surf/.
|
||
|
|
||
|
This routine *does not* generate SIFT/SURF features from an image. These
|
||
|
algorithms are patent encumbered. Please use `skimage.feature.CENSURE`
|
||
|
instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
filelike : string or open file
|
||
|
Input file generated by the feature detectors from
|
||
|
http://people.cs.ubc.ca/~lowe/keypoints/ or
|
||
|
http://www.vision.ee.ethz.ch/~surf/ .
|
||
|
mode : {'SIFT', 'SURF'}, optional
|
||
|
Kind of descriptor used to generate `filelike`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data : record array with fields
|
||
|
- row: int
|
||
|
row position of feature
|
||
|
- column: int
|
||
|
column position of feature
|
||
|
- scale: float
|
||
|
feature scale
|
||
|
- orientation: float
|
||
|
feature orientation
|
||
|
- data: array
|
||
|
feature values
|
||
|
|
||
|
"""
|
||
|
if isinstance(filelike, str):
|
||
|
f = open(filelike, 'r')
|
||
|
filelike_is_str = True
|
||
|
else:
|
||
|
f = filelike
|
||
|
filelike_is_str = False
|
||
|
|
||
|
if mode == 'SIFT':
|
||
|
nr_features, feature_len = map(int, f.readline().split())
|
||
|
datatype = np.dtype([('row', float), ('column', float),
|
||
|
('scale', float), ('orientation', float),
|
||
|
('data', (float, feature_len))])
|
||
|
else:
|
||
|
mode = 'SURF'
|
||
|
feature_len = int(f.readline()) - 1
|
||
|
nr_features = int(f.readline())
|
||
|
datatype = np.dtype([('column', float), ('row', float),
|
||
|
('second_moment', (float, 3)),
|
||
|
('sign', float), ('data', (float, feature_len))])
|
||
|
|
||
|
data = np.fromfile(f, sep=' ')
|
||
|
if data.size != nr_features * datatype.itemsize / np.dtype(float).itemsize:
|
||
|
raise IOError("Invalid {} feature file.".format(mode))
|
||
|
|
||
|
# If `filelike` is passed to the function as filename - close the file
|
||
|
if filelike_is_str:
|
||
|
f.close()
|
||
|
|
||
|
return data.view(datatype)
|
||
|
|
||
|
|
||
|
def load_sift(f):
|
||
|
return _sift_read(f, mode='SIFT')
|
||
|
|
||
|
|
||
|
def load_surf(f):
|
||
|
return _sift_read(f, mode='SURF')
|
||
|
|
||
|
|
||
|
load_sift.__doc__ = _sift_read.__doc__
|
||
|
load_surf.__doc__ = _sift_read.__doc__
|