forked from 170010011/fr
494 lines
18 KiB
Python
494 lines
18 KiB
Python
|
"""
|
||
|
Methods to characterize image textures.
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import warnings
|
||
|
from .._shared.utils import check_nD
|
||
|
from ..util import img_as_float
|
||
|
from ..color import gray2rgb
|
||
|
from ._texture import (_glcm_loop,
|
||
|
_local_binary_pattern,
|
||
|
_multiblock_lbp)
|
||
|
|
||
|
|
||
|
def greycomatrix(image, distances, angles, levels=None, symmetric=False,
|
||
|
normed=False):
|
||
|
"""Calculate the grey-level co-occurrence matrix.
|
||
|
|
||
|
A grey level co-occurrence matrix is a histogram of co-occurring
|
||
|
greyscale values at a given offset over an image.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : array_like
|
||
|
Integer typed input image. Only positive valued images are supported.
|
||
|
If type is other than uint8, the argument `levels` needs to be set.
|
||
|
distances : array_like
|
||
|
List of pixel pair distance offsets.
|
||
|
angles : array_like
|
||
|
List of pixel pair angles in radians.
|
||
|
levels : int, optional
|
||
|
The input image should contain integers in [0, `levels`-1],
|
||
|
where levels indicate the number of grey-levels counted
|
||
|
(typically 256 for an 8-bit image). This argument is required for
|
||
|
16-bit images or higher and is typically the maximum of the image.
|
||
|
As the output matrix is at least `levels` x `levels`, it might
|
||
|
be preferable to use binning of the input image rather than
|
||
|
large values for `levels`.
|
||
|
symmetric : bool, optional
|
||
|
If True, the output matrix `P[:, :, d, theta]` is symmetric. This
|
||
|
is accomplished by ignoring the order of value pairs, so both
|
||
|
(i, j) and (j, i) are accumulated when (i, j) is encountered
|
||
|
for a given offset. The default is False.
|
||
|
normed : bool, optional
|
||
|
If True, normalize each matrix `P[:, :, d, theta]` by dividing
|
||
|
by the total number of accumulated co-occurrences for the given
|
||
|
offset. The elements of the resulting matrix sum to 1. The
|
||
|
default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
P : 4-D ndarray
|
||
|
The grey-level co-occurrence histogram. The value
|
||
|
`P[i,j,d,theta]` is the number of times that grey-level `j`
|
||
|
occurs at a distance `d` and at an angle `theta` from
|
||
|
grey-level `i`. If `normed` is `False`, the output is of
|
||
|
type uint32, otherwise it is float64. The dimensions are:
|
||
|
levels x levels x number of distances x number of angles.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] The GLCM Tutorial Home Page,
|
||
|
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
|
||
|
.. [2] Haralick, RM.; Shanmugam, K.,
|
||
|
"Textural features for image classification"
|
||
|
IEEE Transactions on systems, man, and cybernetics 6 (1973): 610-621.
|
||
|
:DOI:`10.1109/TSMC.1973.4309314`
|
||
|
.. [3] Pattern Recognition Engineering, Morton Nadler & Eric P.
|
||
|
Smith
|
||
|
.. [4] Wikipedia, https://en.wikipedia.org/wiki/Co-occurrence_matrix
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute 2 GLCMs: One for a 1-pixel offset to the right, and one
|
||
|
for a 1-pixel offset upwards.
|
||
|
|
||
|
>>> image = np.array([[0, 0, 1, 1],
|
||
|
... [0, 0, 1, 1],
|
||
|
... [0, 2, 2, 2],
|
||
|
... [2, 2, 3, 3]], dtype=np.uint8)
|
||
|
>>> result = greycomatrix(image, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4],
|
||
|
... levels=4)
|
||
|
>>> result[:, :, 0, 0]
|
||
|
array([[2, 2, 1, 0],
|
||
|
[0, 2, 0, 0],
|
||
|
[0, 0, 3, 1],
|
||
|
[0, 0, 0, 1]], dtype=uint32)
|
||
|
>>> result[:, :, 0, 1]
|
||
|
array([[1, 1, 3, 0],
|
||
|
[0, 1, 1, 0],
|
||
|
[0, 0, 0, 2],
|
||
|
[0, 0, 0, 0]], dtype=uint32)
|
||
|
>>> result[:, :, 0, 2]
|
||
|
array([[3, 0, 2, 0],
|
||
|
[0, 2, 2, 0],
|
||
|
[0, 0, 1, 2],
|
||
|
[0, 0, 0, 0]], dtype=uint32)
|
||
|
>>> result[:, :, 0, 3]
|
||
|
array([[2, 0, 0, 0],
|
||
|
[1, 1, 2, 0],
|
||
|
[0, 0, 2, 1],
|
||
|
[0, 0, 0, 0]], dtype=uint32)
|
||
|
|
||
|
"""
|
||
|
check_nD(image, 2)
|
||
|
check_nD(distances, 1, 'distances')
|
||
|
check_nD(angles, 1, 'angles')
|
||
|
|
||
|
image = np.ascontiguousarray(image)
|
||
|
|
||
|
image_max = image.max()
|
||
|
|
||
|
if np.issubdtype(image.dtype, np.floating):
|
||
|
raise ValueError("Float images are not supported by greycomatrix. "
|
||
|
"Convert the image to an unsigned integer type.")
|
||
|
|
||
|
# for image type > 8bit, levels must be set.
|
||
|
if image.dtype not in (np.uint8, np.int8) and levels is None:
|
||
|
raise ValueError("The levels argument is required for data types "
|
||
|
"other than uint8. The resulting matrix will be at "
|
||
|
"least levels ** 2 in size.")
|
||
|
|
||
|
if np.issubdtype(image.dtype, np.signedinteger) and np.any(image < 0):
|
||
|
raise ValueError("Negative-valued images are not supported.")
|
||
|
|
||
|
if levels is None:
|
||
|
levels = 256
|
||
|
|
||
|
if image_max >= levels:
|
||
|
raise ValueError("The maximum grayscale value in the image should be "
|
||
|
"smaller than the number of levels.")
|
||
|
|
||
|
distances = np.ascontiguousarray(distances, dtype=np.float64)
|
||
|
angles = np.ascontiguousarray(angles, dtype=np.float64)
|
||
|
|
||
|
P = np.zeros((levels, levels, len(distances), len(angles)),
|
||
|
dtype=np.uint32, order='C')
|
||
|
|
||
|
# count co-occurences
|
||
|
_glcm_loop(image, distances, angles, levels, P)
|
||
|
|
||
|
# make each GLMC symmetric
|
||
|
if symmetric:
|
||
|
Pt = np.transpose(P, (1, 0, 2, 3))
|
||
|
P = P + Pt
|
||
|
|
||
|
# normalize each GLCM
|
||
|
if normed:
|
||
|
P = P.astype(np.float64)
|
||
|
glcm_sums = np.apply_over_axes(np.sum, P, axes=(0, 1))
|
||
|
glcm_sums[glcm_sums == 0] = 1
|
||
|
P /= glcm_sums
|
||
|
|
||
|
return P
|
||
|
|
||
|
|
||
|
def greycoprops(P, prop='contrast'):
|
||
|
"""Calculate texture properties of a GLCM.
|
||
|
|
||
|
Compute a feature of a grey level co-occurrence matrix to serve as
|
||
|
a compact summary of the matrix. The properties are computed as
|
||
|
follows:
|
||
|
|
||
|
- 'contrast': :math:`\\sum_{i,j=0}^{levels-1} P_{i,j}(i-j)^2`
|
||
|
- 'dissimilarity': :math:`\\sum_{i,j=0}^{levels-1}P_{i,j}|i-j|`
|
||
|
- 'homogeneity': :math:`\\sum_{i,j=0}^{levels-1}\\frac{P_{i,j}}{1+(i-j)^2}`
|
||
|
- 'ASM': :math:`\\sum_{i,j=0}^{levels-1} P_{i,j}^2`
|
||
|
- 'energy': :math:`\\sqrt{ASM}`
|
||
|
- 'correlation':
|
||
|
.. math:: \\sum_{i,j=0}^{levels-1} P_{i,j}\\left[\\frac{(i-\\mu_i) \\
|
||
|
(j-\\mu_j)}{\\sqrt{(\\sigma_i^2)(\\sigma_j^2)}}\\right]
|
||
|
|
||
|
Each GLCM is normalized to have a sum of 1 before the computation of texture
|
||
|
properties.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
P : ndarray
|
||
|
Input array. `P` is the grey-level co-occurrence histogram
|
||
|
for which to compute the specified property. The value
|
||
|
`P[i,j,d,theta]` is the number of times that grey-level j
|
||
|
occurs at a distance d and at an angle theta from
|
||
|
grey-level i.
|
||
|
prop : {'contrast', 'dissimilarity', 'homogeneity', 'energy', \
|
||
|
'correlation', 'ASM'}, optional
|
||
|
The property of the GLCM to compute. The default is 'contrast'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : 2-D ndarray
|
||
|
2-dimensional array. `results[d, a]` is the property 'prop' for
|
||
|
the d'th distance and the a'th angle.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] The GLCM Tutorial Home Page,
|
||
|
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Compute the contrast for GLCMs with distances [1, 2] and angles
|
||
|
[0 degrees, 90 degrees]
|
||
|
|
||
|
>>> image = np.array([[0, 0, 1, 1],
|
||
|
... [0, 0, 1, 1],
|
||
|
... [0, 2, 2, 2],
|
||
|
... [2, 2, 3, 3]], dtype=np.uint8)
|
||
|
>>> g = greycomatrix(image, [1, 2], [0, np.pi/2], levels=4,
|
||
|
... normed=True, symmetric=True)
|
||
|
>>> contrast = greycoprops(g, 'contrast')
|
||
|
>>> contrast
|
||
|
array([[0.58333333, 1. ],
|
||
|
[1.25 , 2.75 ]])
|
||
|
|
||
|
"""
|
||
|
check_nD(P, 4, 'P')
|
||
|
|
||
|
(num_level, num_level2, num_dist, num_angle) = P.shape
|
||
|
if num_level != num_level2:
|
||
|
raise ValueError('num_level and num_level2 must be equal.')
|
||
|
if num_dist <= 0:
|
||
|
raise ValueError('num_dist must be positive.')
|
||
|
if num_angle <= 0:
|
||
|
raise ValueError('num_angle must be positive.')
|
||
|
|
||
|
# normalize each GLCM
|
||
|
P = P.astype(np.float64)
|
||
|
glcm_sums = np.apply_over_axes(np.sum, P, axes=(0, 1))
|
||
|
glcm_sums[glcm_sums == 0] = 1
|
||
|
P /= glcm_sums
|
||
|
|
||
|
# create weights for specified property
|
||
|
I, J = np.ogrid[0:num_level, 0:num_level]
|
||
|
if prop == 'contrast':
|
||
|
weights = (I - J) ** 2
|
||
|
elif prop == 'dissimilarity':
|
||
|
weights = np.abs(I - J)
|
||
|
elif prop == 'homogeneity':
|
||
|
weights = 1. / (1. + (I - J) ** 2)
|
||
|
elif prop in ['ASM', 'energy', 'correlation']:
|
||
|
pass
|
||
|
else:
|
||
|
raise ValueError('%s is an invalid property' % (prop))
|
||
|
|
||
|
# compute property for each GLCM
|
||
|
if prop == 'energy':
|
||
|
asm = np.apply_over_axes(np.sum, (P ** 2), axes=(0, 1))[0, 0]
|
||
|
results = np.sqrt(asm)
|
||
|
elif prop == 'ASM':
|
||
|
results = np.apply_over_axes(np.sum, (P ** 2), axes=(0, 1))[0, 0]
|
||
|
elif prop == 'correlation':
|
||
|
results = np.zeros((num_dist, num_angle), dtype=np.float64)
|
||
|
I = np.array(range(num_level)).reshape((num_level, 1, 1, 1))
|
||
|
J = np.array(range(num_level)).reshape((1, num_level, 1, 1))
|
||
|
diff_i = I - np.apply_over_axes(np.sum, (I * P), axes=(0, 1))[0, 0]
|
||
|
diff_j = J - np.apply_over_axes(np.sum, (J * P), axes=(0, 1))[0, 0]
|
||
|
|
||
|
std_i = np.sqrt(np.apply_over_axes(np.sum, (P * (diff_i) ** 2),
|
||
|
axes=(0, 1))[0, 0])
|
||
|
std_j = np.sqrt(np.apply_over_axes(np.sum, (P * (diff_j) ** 2),
|
||
|
axes=(0, 1))[0, 0])
|
||
|
cov = np.apply_over_axes(np.sum, (P * (diff_i * diff_j)),
|
||
|
axes=(0, 1))[0, 0]
|
||
|
|
||
|
# handle the special case of standard deviations near zero
|
||
|
mask_0 = std_i < 1e-15
|
||
|
mask_0[std_j < 1e-15] = True
|
||
|
results[mask_0] = 1
|
||
|
|
||
|
# handle the standard case
|
||
|
mask_1 = mask_0 == False
|
||
|
results[mask_1] = cov[mask_1] / (std_i[mask_1] * std_j[mask_1])
|
||
|
elif prop in ['contrast', 'dissimilarity', 'homogeneity']:
|
||
|
weights = weights.reshape((num_level, num_level, 1, 1))
|
||
|
results = np.apply_over_axes(np.sum, (P * weights), axes=(0, 1))[0, 0]
|
||
|
|
||
|
return results
|
||
|
|
||
|
|
||
|
def local_binary_pattern(image, P, R, method='default'):
|
||
|
"""Gray scale and rotation invariant LBP (Local Binary Patterns).
|
||
|
|
||
|
LBP is an invariant descriptor that can be used for texture classification.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : (N, M) array
|
||
|
Graylevel image.
|
||
|
P : int
|
||
|
Number of circularly symmetric neighbour set points (quantization of
|
||
|
the angular space).
|
||
|
R : float
|
||
|
Radius of circle (spatial resolution of the operator).
|
||
|
method : {'default', 'ror', 'uniform', 'var'}
|
||
|
Method to determine the pattern.
|
||
|
|
||
|
* 'default': original local binary pattern which is gray scale but not
|
||
|
rotation invariant.
|
||
|
* 'ror': extension of default implementation which is gray scale and
|
||
|
rotation invariant.
|
||
|
* 'uniform': improved rotation invariance with uniform patterns and
|
||
|
finer quantization of the angular space which is gray scale and
|
||
|
rotation invariant.
|
||
|
* 'nri_uniform': non rotation-invariant uniform patterns variant
|
||
|
which is only gray scale invariant [2]_.
|
||
|
* 'var': rotation invariant variance measures of the contrast of local
|
||
|
image texture which is rotation but not gray scale invariant.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : (N, M) array
|
||
|
LBP image.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Multiresolution Gray-Scale and Rotation Invariant Texture
|
||
|
Classification with Local Binary Patterns.
|
||
|
Timo Ojala, Matti Pietikainen, Topi Maenpaa.
|
||
|
http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/pdf_94.pdf, 2002.
|
||
|
.. [2] Face recognition with local binary patterns.
|
||
|
Timo Ahonen, Abdenour Hadid, Matti Pietikainen,
|
||
|
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6851,
|
||
|
2004.
|
||
|
"""
|
||
|
check_nD(image, 2)
|
||
|
|
||
|
methods = {
|
||
|
'default': ord('D'),
|
||
|
'ror': ord('R'),
|
||
|
'uniform': ord('U'),
|
||
|
'nri_uniform': ord('N'),
|
||
|
'var': ord('V')
|
||
|
}
|
||
|
image = np.ascontiguousarray(image, dtype=np.double)
|
||
|
output = _local_binary_pattern(image, P, R, methods[method.lower()])
|
||
|
return output
|
||
|
|
||
|
|
||
|
def multiblock_lbp(int_image, r, c, width, height):
|
||
|
"""Multi-block local binary pattern (MB-LBP).
|
||
|
|
||
|
The features are calculated similarly to local binary patterns (LBPs),
|
||
|
(See :py:meth:`local_binary_pattern`) except that summed blocks are
|
||
|
used instead of individual pixel values.
|
||
|
|
||
|
MB-LBP is an extension of LBP that can be computed on multiple scales
|
||
|
in constant time using the integral image. Nine equally-sized rectangles
|
||
|
are used to compute a feature. For each rectangle, the sum of the pixel
|
||
|
intensities is computed. Comparisons of these sums to that of the central
|
||
|
rectangle determine the feature, similarly to LBP.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
int_image : (N, M) array
|
||
|
Integral image.
|
||
|
r : int
|
||
|
Row-coordinate of top left corner of a rectangle containing feature.
|
||
|
c : int
|
||
|
Column-coordinate of top left corner of a rectangle containing feature.
|
||
|
width : int
|
||
|
Width of one of the 9 equal rectangles that will be used to compute
|
||
|
a feature.
|
||
|
height : int
|
||
|
Height of one of the 9 equal rectangles that will be used to compute
|
||
|
a feature.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : int
|
||
|
8-bit MB-LBP feature descriptor.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Face Detection Based on Multi-Block LBP
|
||
|
Representation. Lun Zhang, Rufeng Chu, Shiming Xiang, Shengcai Liao,
|
||
|
Stan Z. Li
|
||
|
http://www.cbsr.ia.ac.cn/users/scliao/papers/Zhang-ICB07-MBLBP.pdf
|
||
|
"""
|
||
|
|
||
|
int_image = np.ascontiguousarray(int_image, dtype=np.float32)
|
||
|
lbp_code = _multiblock_lbp(int_image, r, c, width, height)
|
||
|
return lbp_code
|
||
|
|
||
|
|
||
|
def draw_multiblock_lbp(image, r, c, width, height,
|
||
|
lbp_code=0,
|
||
|
color_greater_block=(1, 1, 1),
|
||
|
color_less_block=(0, 0.69, 0.96),
|
||
|
alpha=0.5
|
||
|
):
|
||
|
"""Multi-block local binary pattern visualization.
|
||
|
|
||
|
Blocks with higher sums are colored with alpha-blended white rectangles,
|
||
|
whereas blocks with lower sums are colored alpha-blended cyan. Colors
|
||
|
and the `alpha` parameter can be changed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
image : ndarray of float or uint
|
||
|
Image on which to visualize the pattern.
|
||
|
r : int
|
||
|
Row-coordinate of top left corner of a rectangle containing feature.
|
||
|
c : int
|
||
|
Column-coordinate of top left corner of a rectangle containing feature.
|
||
|
width : int
|
||
|
Width of one of 9 equal rectangles that will be used to compute
|
||
|
a feature.
|
||
|
height : int
|
||
|
Height of one of 9 equal rectangles that will be used to compute
|
||
|
a feature.
|
||
|
lbp_code : int
|
||
|
The descriptor of feature to visualize. If not provided, the
|
||
|
descriptor with 0 value will be used.
|
||
|
color_greater_block : tuple of 3 floats
|
||
|
Floats specifying the color for the block that has greater
|
||
|
intensity value. They should be in the range [0, 1].
|
||
|
Corresponding values define (R, G, B) values. Default value
|
||
|
is white (1, 1, 1).
|
||
|
color_greater_block : tuple of 3 floats
|
||
|
Floats specifying the color for the block that has greater intensity
|
||
|
value. They should be in the range [0, 1]. Corresponding values define
|
||
|
(R, G, B) values. Default value is cyan (0, 0.69, 0.96).
|
||
|
alpha : float
|
||
|
Value in the range [0, 1] that specifies opacity of visualization.
|
||
|
1 - fully transparent, 0 - opaque.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : ndarray of float
|
||
|
Image with MB-LBP visualization.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Face Detection Based on Multi-Block LBP
|
||
|
Representation. Lun Zhang, Rufeng Chu, Shiming Xiang, Shengcai Liao,
|
||
|
Stan Z. Li
|
||
|
http://www.cbsr.ia.ac.cn/users/scliao/papers/Zhang-ICB07-MBLBP.pdf
|
||
|
"""
|
||
|
|
||
|
# Default colors for regions.
|
||
|
# White is for the blocks that are brighter.
|
||
|
# Cyan is for the blocks that has less intensity.
|
||
|
color_greater_block = np.asarray(color_greater_block, dtype=np.float64)
|
||
|
color_less_block = np.asarray(color_less_block, dtype=np.float64)
|
||
|
|
||
|
# Copy array to avoid the changes to the original one.
|
||
|
output = np.copy(image)
|
||
|
|
||
|
# As the visualization uses RGB color we need 3 bands.
|
||
|
if len(image.shape) < 3:
|
||
|
output = gray2rgb(image)
|
||
|
|
||
|
# Colors are specified in floats.
|
||
|
output = img_as_float(output)
|
||
|
|
||
|
# Offsets of neighbour rectangles relative to central one.
|
||
|
# It has order starting from top left and going clockwise.
|
||
|
neighbour_rect_offsets = ((-1, -1), (-1, 0), (-1, 1),
|
||
|
(0, 1), (1, 1), (1, 0),
|
||
|
(1, -1), (0, -1))
|
||
|
|
||
|
# Pre-multiply the offsets with width and height.
|
||
|
neighbour_rect_offsets = np.array(neighbour_rect_offsets)
|
||
|
neighbour_rect_offsets[:, 0] *= height
|
||
|
neighbour_rect_offsets[:, 1] *= width
|
||
|
|
||
|
# Top-left coordinates of central rectangle.
|
||
|
central_rect_r = r + height
|
||
|
central_rect_c = c + width
|
||
|
|
||
|
for element_num, offset in enumerate(neighbour_rect_offsets):
|
||
|
|
||
|
offset_r, offset_c = offset
|
||
|
|
||
|
curr_r = central_rect_r + offset_r
|
||
|
curr_c = central_rect_c + offset_c
|
||
|
|
||
|
has_greater_value = lbp_code & (1 << (7-element_num))
|
||
|
|
||
|
# Mix-in the visualization colors.
|
||
|
if has_greater_value:
|
||
|
new_value = ((1-alpha) *
|
||
|
output[curr_r:curr_r+height, curr_c:curr_c+width] +
|
||
|
alpha * color_greater_block)
|
||
|
output[curr_r:curr_r+height, curr_c:curr_c+width] = new_value
|
||
|
else:
|
||
|
new_value = ((1-alpha) *
|
||
|
output[curr_r:curr_r+height, curr_c:curr_c+width] +
|
||
|
alpha * color_less_block)
|
||
|
output[curr_r:curr_r+height, curr_c:curr_c+width] = new_value
|
||
|
|
||
|
return output
|