fr/fr_env/lib/python3.8/site-packages/scipy/optimize/_differentialevolution.py

1340 lines
56 KiB
Python
Raw Permalink Normal View History

2021-02-17 12:26:31 +05:30
"""
differential_evolution: The differential evolution global optimization algorithm
Added by Andrew Nelson 2014
"""
import warnings
import numpy as np
from scipy.optimize import OptimizeResult, minimize
from scipy.optimize.optimize import _status_message
from scipy._lib._util import check_random_state, MapWrapper
from scipy.optimize._constraints import (Bounds, new_bounds_to_old,
NonlinearConstraint, LinearConstraint)
from scipy.sparse import issparse
__all__ = ['differential_evolution']
_MACHEPS = np.finfo(np.float64).eps
def differential_evolution(func, bounds, args=(), strategy='best1bin',
maxiter=1000, popsize=15, tol=0.01,
mutation=(0.5, 1), recombination=0.7, seed=None,
callback=None, disp=False, polish=True,
init='latinhypercube', atol=0, updating='immediate',
workers=1, constraints=()):
"""Finds the global minimum of a multivariate function.
Differential Evolution is stochastic in nature (does not use gradient
methods) to find the minimum, and can search large areas of candidate
space, but often requires larger numbers of function evaluations than
conventional gradient-based techniques.
The algorithm is due to Storn and Price [1]_.
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
and ``args`` is a tuple of any additional fixed parameters needed to
completely specify the function.
bounds : sequence or `Bounds`, optional
Bounds for variables. There are two ways to specify the bounds:
1. Instance of `Bounds` class.
2. ``(min, max)`` pairs for each element in ``x``, defining the finite
lower and upper bounds for the optimizing argument of `func`. It is
required to have ``len(bounds) == len(x)``. ``len(bounds)`` is used
to determine the number of parameters in ``x``.
args : tuple, optional
Any additional fixed parameters needed to
completely specify the objective function.
strategy : str, optional
The differential evolution strategy to use. Should be one of:
- 'best1bin'
- 'best1exp'
- 'rand1exp'
- 'randtobest1exp'
- 'currenttobest1exp'
- 'best2exp'
- 'rand2exp'
- 'randtobest1bin'
- 'currenttobest1bin'
- 'best2bin'
- 'rand2bin'
- 'rand1bin'
The default is 'best1bin'.
maxiter : int, optional
The maximum number of generations over which the entire population is
evolved. The maximum number of function evaluations (with no polishing)
is: ``(maxiter + 1) * popsize * len(x)``
popsize : int, optional
A multiplier for setting the total population size. The population has
``popsize * len(x)`` individuals (unless the initial population is
supplied via the `init` keyword).
tol : float, optional
Relative tolerance for convergence, the solving stops when
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
where and `atol` and `tol` are the absolute and relative tolerance
respectively.
mutation : float or tuple(float, float), optional
The mutation constant. In the literature this is also known as
differential weight, being denoted by F.
If specified as a float it should be in the range [0, 2].
If specified as a tuple ``(min, max)`` dithering is employed. Dithering
randomly changes the mutation constant on a generation by generation
basis. The mutation constant for that generation is taken from
``U[min, max)``. Dithering can help speed convergence significantly.
Increasing the mutation constant increases the search radius, but will
slow down convergence.
recombination : float, optional
The recombination constant, should be in the range [0, 1]. In the
literature this is also known as the crossover probability, being
denoted by CR. Increasing this value allows a larger number of mutants
to progress into the next generation, but at the risk of population
stability.
seed : {int, `~np.random.RandomState`, `~np.random.Generator`}, optional
If `seed` is not specified the `~np.random.RandomState` singleton is
used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with seed.
If `seed` is already a ``RandomState`` or a ``Generator`` instance,
then that object is used.
Specify `seed` for repeatable minimizations.
disp : bool, optional
Prints the evaluated `func` at every iteration.
callback : callable, `callback(xk, convergence=val)`, optional
A function to follow the progress of the minimization. ``xk`` is
the current value of ``x0``. ``val`` represents the fractional
value of the population convergence. When ``val`` is greater than one
the function halts. If callback returns `True`, then the minimization
is halted (any polishing is still carried out).
polish : bool, optional
If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
method is used to polish the best population member at the end, which
can improve the minimization slightly. If a constrained problem is
being studied then the `trust-constr` method is used instead.
init : str or array-like, optional
Specify which type of population initialization is performed. Should be
one of:
- 'latinhypercube'
- 'random'
- array specifying the initial population. The array should have
shape ``(M, len(x))``, where M is the total population size and
len(x) is the number of parameters.
`init` is clipped to `bounds` before use.
The default is 'latinhypercube'. Latin Hypercube sampling tries to
maximize coverage of the available parameter space. 'random'
initializes the population randomly - this has the drawback that
clustering can occur, preventing the whole of parameter space being
covered. Use of an array to specify a population subset could be used,
for example, to create a tight bunch of initial guesses in an location
where the solution is known to exist, thereby reducing time for
convergence.
atol : float, optional
Absolute tolerance for convergence, the solving stops when
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
where and `atol` and `tol` are the absolute and relative tolerance
respectively.
updating : {'immediate', 'deferred'}, optional
If ``'immediate'``, the best solution vector is continuously updated
within a single generation [4]_. This can lead to faster convergence as
trial vectors can take advantage of continuous improvements in the best
solution.
With ``'deferred'``, the best solution vector is updated once per
generation. Only ``'deferred'`` is compatible with parallelization, and
the `workers` keyword can over-ride this option.
.. versionadded:: 1.2.0
workers : int or map-like callable, optional
If `workers` is an int the population is subdivided into `workers`
sections and evaluated in parallel
(uses `multiprocessing.Pool <multiprocessing>`).
Supply -1 to use all available CPU cores.
Alternatively supply a map-like callable, such as
`multiprocessing.Pool.map` for evaluating the population in parallel.
This evaluation is carried out as ``workers(func, iterable)``.
This option will override the `updating` keyword to
``updating='deferred'`` if ``workers != 1``.
Requires that `func` be pickleable.
.. versionadded:: 1.2.0
constraints : {NonLinearConstraint, LinearConstraint, Bounds}
Constraints on the solver, over and above those applied by the `bounds`
kwd. Uses the approach by Lampinen [5]_.
.. versionadded:: 1.4.0
Returns
-------
res : OptimizeResult
The optimization result represented as a `OptimizeResult` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the optimizer exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes. If `polish`
was employed, and a lower minimum was obtained by the polishing, then
OptimizeResult also contains the ``jac`` attribute.
If the eventual solution does not satisfy the applied constraints
``success`` will be `False`.
Notes
-----
Differential evolution is a stochastic population based method that is
useful for global optimization problems. At each pass through the population
the algorithm mutates each candidate solution by mixing with other candidate
solutions to create a trial candidate. There are several strategies [2]_ for
creating trial candidates, which suit some problems more than others. The
'best1bin' strategy is a good starting point for many systems. In this
strategy two members of the population are randomly chosen. Their difference
is used to mutate the best member (the 'best' in 'best1bin'), :math:`b_0`,
so far:
.. math::
b' = b_0 + mutation * (population[rand0] - population[rand1])
A trial vector is then constructed. Starting with a randomly chosen ith
parameter the trial is sequentially filled (in modulo) with parameters from
``b'`` or the original candidate. The choice of whether to use ``b'`` or the
original candidate is made with a binomial distribution (the 'bin' in
'best1bin') - a random number in [0, 1) is generated. If this number is
less than the `recombination` constant then the parameter is loaded from
``b'``, otherwise it is loaded from the original candidate. The final
parameter is always loaded from ``b'``. Once the trial candidate is built
its fitness is assessed. If the trial is better than the original candidate
then it takes its place. If it is also better than the best overall
candidate it also replaces that.
To improve your chances of finding a global minimum use higher `popsize`
values, with higher `mutation` and (dithering), but lower `recombination`
values. This has the effect of widening the search radius, but slowing
convergence.
By default the best solution vector is updated continuously within a single
iteration (``updating='immediate'``). This is a modification [4]_ of the
original differential evolution algorithm which can lead to faster
convergence as trial vectors can immediately benefit from improved
solutions. To use the original Storn and Price behaviour, updating the best
solution once per iteration, set ``updating='deferred'``.
.. versionadded:: 0.15.0
Examples
--------
Let us consider the problem of minimizing the Rosenbrock function. This
function is implemented in `rosen` in `scipy.optimize`.
>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)
Now repeat, but with parallelization.
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds, updating='deferred',
... workers=2)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)
Let's try and do a constrained minimization
>>> from scipy.optimize import NonlinearConstraint, Bounds
>>> def constr_f(x):
... return np.array(x[0] + x[1])
>>>
>>> # the sum of x[0] and x[1] must be less than 1.9
>>> nlc = NonlinearConstraint(constr_f, -np.inf, 1.9)
>>> # specify limits using a `Bounds` object.
>>> bounds = Bounds([0., 0.], [2., 2.])
>>> result = differential_evolution(rosen, bounds, constraints=(nlc),
... seed=1)
>>> result.x, result.fun
(array([0.96633867, 0.93363577]), 0.0011361355854792312)
Next find the minimum of the Ackley function
(https://en.wikipedia.org/wiki/Test_functions_for_optimization).
>>> from scipy.optimize import differential_evolution
>>> import numpy as np
>>> def ackley(x):
... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
>>> bounds = [(-5, 5), (-5, 5)]
>>> result = differential_evolution(ackley, bounds)
>>> result.x, result.fun
(array([ 0., 0.]), 4.4408920985006262e-16)
References
----------
.. [1] Storn, R and Price, K, Differential Evolution - a Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces,
Journal of Global Optimization, 1997, 11, 341 - 359.
.. [2] http://www1.icsi.berkeley.edu/~storn/code.html
.. [3] http://en.wikipedia.org/wiki/Differential_evolution
.. [4] Wormington, M., Panaccione, C., Matney, K. M., Bowen, D. K., -
Characterization of structures from X-ray scattering data using
genetic algorithms, Phil. Trans. R. Soc. Lond. A, 1999, 357,
2827-2848
.. [5] Lampinen, J., A constraint handling approach for the differential
evolution algorithm. Proceedings of the 2002 Congress on
Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). Vol. 2. IEEE,
2002.
"""
# using a context manager means that any created Pool objects are
# cleared up.
with DifferentialEvolutionSolver(func, bounds, args=args,
strategy=strategy,
maxiter=maxiter,
popsize=popsize, tol=tol,
mutation=mutation,
recombination=recombination,
seed=seed, polish=polish,
callback=callback,
disp=disp, init=init, atol=atol,
updating=updating,
workers=workers,
constraints=constraints) as solver:
ret = solver.solve()
return ret
class DifferentialEvolutionSolver(object):
"""This class implements the differential evolution solver
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
and ``args`` is a tuple of any additional fixed parameters needed to
completely specify the function.
bounds : sequence or `Bounds`, optional
Bounds for variables. There are two ways to specify the bounds:
1. Instance of `Bounds` class.
2. ``(min, max)`` pairs for each element in ``x``, defining the finite
lower and upper bounds for the optimizing argument of `func`. It is
required to have ``len(bounds) == len(x)``. ``len(bounds)`` is used
to determine the number of parameters in ``x``.
args : tuple, optional
Any additional fixed parameters needed to
completely specify the objective function.
strategy : str, optional
The differential evolution strategy to use. Should be one of:
- 'best1bin'
- 'best1exp'
- 'rand1exp'
- 'randtobest1exp'
- 'currenttobest1exp'
- 'best2exp'
- 'rand2exp'
- 'randtobest1bin'
- 'currenttobest1bin'
- 'best2bin'
- 'rand2bin'
- 'rand1bin'
The default is 'best1bin'
maxiter : int, optional
The maximum number of generations over which the entire population is
evolved. The maximum number of function evaluations (with no polishing)
is: ``(maxiter + 1) * popsize * len(x)``
popsize : int, optional
A multiplier for setting the total population size. The population has
``popsize * len(x)`` individuals (unless the initial population is
supplied via the `init` keyword).
tol : float, optional
Relative tolerance for convergence, the solving stops when
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
where and `atol` and `tol` are the absolute and relative tolerance
respectively.
mutation : float or tuple(float, float), optional
The mutation constant. In the literature this is also known as
differential weight, being denoted by F.
If specified as a float it should be in the range [0, 2].
If specified as a tuple ``(min, max)`` dithering is employed. Dithering
randomly changes the mutation constant on a generation by generation
basis. The mutation constant for that generation is taken from
U[min, max). Dithering can help speed convergence significantly.
Increasing the mutation constant increases the search radius, but will
slow down convergence.
recombination : float, optional
The recombination constant, should be in the range [0, 1]. In the
literature this is also known as the crossover probability, being
denoted by CR. Increasing this value allows a larger number of mutants
to progress into the next generation, but at the risk of population
stability.
seed : {int, `~np.random.RandomState`, `~np.random.Generator`}, optional
If `seed` is not specified the `~np.random.RandomState` singleton is
used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with seed.
If `seed` is already a ``RandomState`` or a ``Generator`` instance,
then that object is used.
Specify `seed` for repeatable minimizations.
disp : bool, optional
Prints the evaluated `func` at every iteration.
callback : callable, `callback(xk, convergence=val)`, optional
A function to follow the progress of the minimization. ``xk`` is
the current value of ``x0``. ``val`` represents the fractional
value of the population convergence. When ``val`` is greater than one
the function halts. If callback returns `True`, then the minimization
is halted (any polishing is still carried out).
polish : bool, optional
If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
method is used to polish the best population member at the end, which
can improve the minimization slightly. If a constrained problem is
being studied then the `trust-constr` method is used instead.
maxfun : int, optional
Set the maximum number of function evaluations. However, it probably
makes more sense to set `maxiter` instead.
init : str or array-like, optional
Specify which type of population initialization is performed. Should be
one of:
- 'latinhypercube'
- 'random'
- array specifying the initial population. The array should have
shape ``(M, len(x))``, where M is the total population size and
len(x) is the number of parameters.
`init` is clipped to `bounds` before use.
The default is 'latinhypercube'. Latin Hypercube sampling tries to
maximize coverage of the available parameter space. 'random'
initializes the population randomly - this has the drawback that
clustering can occur, preventing the whole of parameter space being
covered. Use of an array to specify a population could be used, for
example, to create a tight bunch of initial guesses in an location
where the solution is known to exist, thereby reducing time for
convergence.
atol : float, optional
Absolute tolerance for convergence, the solving stops when
``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
where and `atol` and `tol` are the absolute and relative tolerance
respectively.
updating : {'immediate', 'deferred'}, optional
If `immediate` the best solution vector is continuously updated within
a single generation. This can lead to faster convergence as trial
vectors can take advantage of continuous improvements in the best
solution.
With `deferred` the best solution vector is updated once per
generation. Only `deferred` is compatible with parallelization, and the
`workers` keyword can over-ride this option.
workers : int or map-like callable, optional
If `workers` is an int the population is subdivided into `workers`
sections and evaluated in parallel
(uses `multiprocessing.Pool <multiprocessing>`).
Supply `-1` to use all cores available to the Process.
Alternatively supply a map-like callable, such as
`multiprocessing.Pool.map` for evaluating the population in parallel.
This evaluation is carried out as ``workers(func, iterable)``.
This option will override the `updating` keyword to
`updating='deferred'` if `workers != 1`.
Requires that `func` be pickleable.
constraints : {NonLinearConstraint, LinearConstraint, Bounds}
Constraints on the solver, over and above those applied by the `bounds`
kwd. Uses the approach by Lampinen.
"""
# Dispatch of mutation strategy method (binomial or exponential).
_binomial = {'best1bin': '_best1',
'randtobest1bin': '_randtobest1',
'currenttobest1bin': '_currenttobest1',
'best2bin': '_best2',
'rand2bin': '_rand2',
'rand1bin': '_rand1'}
_exponential = {'best1exp': '_best1',
'rand1exp': '_rand1',
'randtobest1exp': '_randtobest1',
'currenttobest1exp': '_currenttobest1',
'best2exp': '_best2',
'rand2exp': '_rand2'}
__init_error_msg = ("The population initialization method must be one of "
"'latinhypercube' or 'random', or an array of shape "
"(M, N) where N is the number of parameters and M>5")
def __init__(self, func, bounds, args=(),
strategy='best1bin', maxiter=1000, popsize=15,
tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None,
maxfun=np.inf, callback=None, disp=False, polish=True,
init='latinhypercube', atol=0, updating='immediate',
workers=1, constraints=()):
if strategy in self._binomial:
self.mutation_func = getattr(self, self._binomial[strategy])
elif strategy in self._exponential:
self.mutation_func = getattr(self, self._exponential[strategy])
else:
raise ValueError("Please select a valid mutation strategy")
self.strategy = strategy
self.callback = callback
self.polish = polish
# set the updating / parallelisation options
if updating in ['immediate', 'deferred']:
self._updating = updating
# want to use parallelisation, but updating is immediate
if workers != 1 and updating == 'immediate':
warnings.warn("differential_evolution: the 'workers' keyword has"
" overridden updating='immediate' to"
" updating='deferred'", UserWarning)
self._updating = 'deferred'
# an object with a map method.
self._mapwrapper = MapWrapper(workers)
# relative and absolute tolerances for convergence
self.tol, self.atol = tol, atol
# Mutation constant should be in [0, 2). If specified as a sequence
# then dithering is performed.
self.scale = mutation
if (not np.all(np.isfinite(mutation)) or
np.any(np.array(mutation) >= 2) or
np.any(np.array(mutation) < 0)):
raise ValueError('The mutation constant must be a float in '
'U[0, 2), or specified as a tuple(min, max)'
' where min < max and min, max are in U[0, 2).')
self.dither = None
if hasattr(mutation, '__iter__') and len(mutation) > 1:
self.dither = [mutation[0], mutation[1]]
self.dither.sort()
self.cross_over_probability = recombination
# we create a wrapped function to allow the use of map (and Pool.map
# in the future)
self.func = _FunctionWrapper(func, args)
self.args = args
# convert tuple of lower and upper bounds to limits
# [(low_0, high_0), ..., (low_n, high_n]
# -> [[low_0, ..., low_n], [high_0, ..., high_n]]
if isinstance(bounds, Bounds):
self.limits = np.array(new_bounds_to_old(bounds.lb,
bounds.ub,
len(bounds.lb)),
dtype=float).T
else:
self.limits = np.array(bounds, dtype='float').T
if (np.size(self.limits, 0) != 2 or not
np.all(np.isfinite(self.limits))):
raise ValueError('bounds should be a sequence containing '
'real valued (min, max) pairs for each value'
' in x')
if maxiter is None: # the default used to be None
maxiter = 1000
self.maxiter = maxiter
if maxfun is None: # the default used to be None
maxfun = np.inf
self.maxfun = maxfun
# population is scaled to between [0, 1].
# We have to scale between parameter <-> population
# save these arguments for _scale_parameter and
# _unscale_parameter. This is an optimization
self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])
self.parameter_count = np.size(self.limits, 1)
self.random_number_generator = check_random_state(seed)
# default population initialization is a latin hypercube design, but
# there are other population initializations possible.
# the minimum is 5 because 'best2bin' requires a population that's at
# least 5 long
self.num_population_members = max(5, popsize * self.parameter_count)
self.population_shape = (self.num_population_members,
self.parameter_count)
self._nfev = 0
if isinstance(init, str):
if init == 'latinhypercube':
self.init_population_lhs()
elif init == 'random':
self.init_population_random()
else:
raise ValueError(self.__init_error_msg)
else:
self.init_population_array(init)
# infrastructure for constraints
# dummy parameter vector for preparing constraints, this is required so
# that the number of constraints is known.
x0 = self._scale_parameters(self.population[0])
self.constraints = constraints
self._wrapped_constraints = []
if hasattr(constraints, '__len__'):
# sequence of constraints, this will also deal with default
# keyword parameter
for c in constraints:
self._wrapped_constraints.append(_ConstraintWrapper(c, x0))
else:
self._wrapped_constraints = [_ConstraintWrapper(constraints, x0)]
self.constraint_violation = np.zeros((self.num_population_members, 1))
self.feasible = np.ones(self.num_population_members, bool)
self.disp = disp
def init_population_lhs(self):
"""
Initializes the population with Latin Hypercube Sampling.
Latin Hypercube Sampling ensures that each parameter is uniformly
sampled over its range.
"""
rng = self.random_number_generator
# Each parameter range needs to be sampled uniformly. The scaled
# parameter range ([0, 1)) needs to be split into
# `self.num_population_members` segments, each of which has the following
# size:
segsize = 1.0 / self.num_population_members
# Within each segment we sample from a uniform random distribution.
# We need to do this sampling for each parameter.
samples = (segsize * rng.uniform(size=self.population_shape)
# Offset each segment to cover the entire parameter range [0, 1)
+ np.linspace(0., 1., self.num_population_members,
endpoint=False)[:, np.newaxis])
# Create an array for population of candidate solutions.
self.population = np.zeros_like(samples)
# Initialize population of candidate solutions by permutation of the
# random samples.
for j in range(self.parameter_count):
order = rng.permutation(range(self.num_population_members))
self.population[:, j] = samples[order, j]
# reset population energies
self.population_energies = np.full(self.num_population_members,
np.inf)
# reset number of function evaluations counter
self._nfev = 0
def init_population_random(self):
"""
Initializes the population at random. This type of initialization
can possess clustering, Latin Hypercube sampling is generally better.
"""
rng = self.random_number_generator
self.population = rng.uniform(size=self.population_shape)
# reset population energies
self.population_energies = np.full(self.num_population_members,
np.inf)
# reset number of function evaluations counter
self._nfev = 0
def init_population_array(self, init):
"""
Initializes the population with a user specified population.
Parameters
----------
init : np.ndarray
Array specifying subset of the initial population. The array should
have shape (M, len(x)), where len(x) is the number of parameters.
The population is clipped to the lower and upper bounds.
"""
# make sure you're using a float array
popn = np.asfarray(init)
if (np.size(popn, 0) < 5 or
popn.shape[1] != self.parameter_count or
len(popn.shape) != 2):
raise ValueError("The population supplied needs to have shape"
" (M, len(x)), where M > 4.")
# scale values and clip to bounds, assigning to population
self.population = np.clip(self._unscale_parameters(popn), 0, 1)
self.num_population_members = np.size(self.population, 0)
self.population_shape = (self.num_population_members,
self.parameter_count)
# reset population energies
self.population_energies = np.full(self.num_population_members,
np.inf)
# reset number of function evaluations counter
self._nfev = 0
@property
def x(self):
"""
The best solution from the solver
"""
return self._scale_parameters(self.population[0])
@property
def convergence(self):
"""
The standard deviation of the population energies divided by their
mean.
"""
if np.any(np.isinf(self.population_energies)):
return np.inf
return (np.std(self.population_energies) /
np.abs(np.mean(self.population_energies) + _MACHEPS))
def converged(self):
"""
Return True if the solver has converged.
"""
if np.any(np.isinf(self.population_energies)):
return False
return (np.std(self.population_energies) <=
self.atol +
self.tol * np.abs(np.mean(self.population_energies)))
def solve(self):
"""
Runs the DifferentialEvolutionSolver.
Returns
-------
res : OptimizeResult
The optimization result represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the optimizer exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes. If `polish`
was employed, and a lower minimum was obtained by the polishing,
then OptimizeResult also contains the ``jac`` attribute.
"""
nit, warning_flag = 0, False
status_message = _status_message['success']
# The population may have just been initialized (all entries are
# np.inf). If it has you have to calculate the initial energies.
# Although this is also done in the evolve generator it's possible
# that someone can set maxiter=0, at which point we still want the
# initial energies to be calculated (the following loop isn't run).
if np.all(np.isinf(self.population_energies)):
self.feasible, self.constraint_violation = (
self._calculate_population_feasibilities(self.population))
# only work out population energies for feasible solutions
self.population_energies[self.feasible] = (
self._calculate_population_energies(
self.population[self.feasible]))
self._promote_lowest_energy()
# do the optimization.
for nit in range(1, self.maxiter + 1):
# evolve the population by a generation
try:
next(self)
except StopIteration:
warning_flag = True
if self._nfev > self.maxfun:
status_message = _status_message['maxfev']
elif self._nfev == self.maxfun:
status_message = ('Maximum number of function evaluations'
' has been reached.')
break
if self.disp:
print("differential_evolution step %d: f(x)= %g"
% (nit,
self.population_energies[0]))
if self.callback:
c = self.tol / (self.convergence + _MACHEPS)
warning_flag = bool(self.callback(self.x, convergence=c))
if warning_flag:
status_message = ('callback function requested stop early'
' by returning True')
# should the solver terminate?
if warning_flag or self.converged():
break
else:
status_message = _status_message['maxiter']
warning_flag = True
DE_result = OptimizeResult(
x=self.x,
fun=self.population_energies[0],
nfev=self._nfev,
nit=nit,
message=status_message,
success=(warning_flag is not True))
if self.polish:
polish_method = 'L-BFGS-B'
if self._wrapped_constraints:
polish_method = 'trust-constr'
constr_violation = self._constraint_violation_fn(DE_result.x)
if np.any(constr_violation > 0.):
warnings.warn("differential evolution didn't find a"
" solution satisfying the constraints,"
" attempting to polish from the least"
" infeasible solution", UserWarning)
result = minimize(self.func,
np.copy(DE_result.x),
method=polish_method,
bounds=self.limits.T,
constraints=self.constraints)
self._nfev += result.nfev
DE_result.nfev = self._nfev
# Polishing solution is only accepted if there is an improvement in
# cost function, the polishing was successful and the solution lies
# within the bounds.
if (result.fun < DE_result.fun and
result.success and
np.all(result.x <= self.limits[1]) and
np.all(self.limits[0] <= result.x)):
DE_result.fun = result.fun
DE_result.x = result.x
DE_result.jac = result.jac
# to keep internal state consistent
self.population_energies[0] = result.fun
self.population[0] = self._unscale_parameters(result.x)
if self._wrapped_constraints:
DE_result.constr = [c.violation(DE_result.x) for
c in self._wrapped_constraints]
DE_result.constr_violation = np.max(
np.concatenate(DE_result.constr))
DE_result.maxcv = DE_result.constr_violation
if DE_result.maxcv > 0:
# if the result is infeasible then success must be False
DE_result.success = False
DE_result.message = ("The solution does not satisfy the"
" constraints, MAXCV = " % DE_result.maxcv)
return DE_result
def _calculate_population_energies(self, population):
"""
Calculate the energies of a population.
Parameters
----------
population : ndarray
An array of parameter vectors normalised to [0, 1] using lower
and upper limits. Has shape ``(np.size(population, 0), len(x))``.
Returns
-------
energies : ndarray
An array of energies corresponding to each population member. If
maxfun will be exceeded during this call, then the number of
function evaluations will be reduced and energies will be
right-padded with np.inf. Has shape ``(np.size(population, 0),)``
"""
num_members = np.size(population, 0)
nfevs = min(num_members,
self.maxfun - num_members)
energies = np.full(num_members, np.inf)
parameters_pop = self._scale_parameters(population)
try:
calc_energies = list(self._mapwrapper(self.func,
parameters_pop[0:nfevs]))
energies[0:nfevs] = np.squeeze(calc_energies)
except (TypeError, ValueError) as e:
# wrong number of arguments for _mapwrapper
# or wrong length returned from the mapper
raise RuntimeError(
"The map-like callable must be of the form f(func, iterable), "
"returning a sequence of numbers the same length as 'iterable'"
) from e
self._nfev += nfevs
return energies
def _promote_lowest_energy(self):
# swaps 'best solution' into first population entry
idx = np.arange(self.num_population_members)
feasible_solutions = idx[self.feasible]
if feasible_solutions.size:
# find the best feasible solution
idx_t = np.argmin(self.population_energies[feasible_solutions])
l = feasible_solutions[idx_t]
else:
# no solution was feasible, use 'best' infeasible solution, which
# will violate constraints the least
l = np.argmin(np.sum(self.constraint_violation, axis=1))
self.population_energies[[0, l]] = self.population_energies[[l, 0]]
self.population[[0, l], :] = self.population[[l, 0], :]
self.feasible[[0, l]] = self.feasible[[l, 0]]
self.constraint_violation[[0, l], :] = (
self.constraint_violation[[l, 0], :])
def _constraint_violation_fn(self, x):
"""
Calculates total constraint violation for all the constraints, for a given
solution.
Parameters
----------
x : ndarray
Solution vector
Returns
-------
cv : ndarray
Total violation of constraints. Has shape ``(M,)``, where M is the
number of constraints (if each constraint function only returns one
value)
"""
return np.concatenate([c.violation(x) for c in self._wrapped_constraints])
def _calculate_population_feasibilities(self, population):
"""
Calculate the feasibilities of a population.
Parameters
----------
population : ndarray
An array of parameter vectors normalised to [0, 1] using lower
and upper limits. Has shape ``(np.size(population, 0), len(x))``.
Returns
-------
feasible, constraint_violation : ndarray, ndarray
Boolean array of feasibility for each population member, and an
array of the constraint violation for each population member.
constraint_violation has shape ``(np.size(population, 0), M)``,
where M is the number of constraints.
"""
num_members = np.size(population, 0)
if not self._wrapped_constraints:
# shortcut for no constraints
return np.ones(num_members, bool), np.zeros((num_members, 1))
parameters_pop = self._scale_parameters(population)
constraint_violation = np.array([self._constraint_violation_fn(x)
for x in parameters_pop])
feasible = ~(np.sum(constraint_violation, axis=1) > 0)
return feasible, constraint_violation
def __iter__(self):
return self
def __enter__(self):
return self
def __exit__(self, *args):
return self._mapwrapper.__exit__(*args)
def _accept_trial(self, energy_trial, feasible_trial, cv_trial,
energy_orig, feasible_orig, cv_orig):
"""
Trial is accepted if:
* it satisfies all constraints and provides a lower or equal objective
function value, while both the compared solutions are feasible
- or -
* it is feasible while the original solution is infeasible,
- or -
* it is infeasible, but provides a lower or equal constraint violation
for all constraint functions.
This test corresponds to section III of Lampinen [1]_.
Parameters
----------
energy_trial : float
Energy of the trial solution
feasible_trial : float
Feasibility of trial solution
cv_trial : array-like
Excess constraint violation for the trial solution
energy_orig : float
Energy of the original solution
feasible_orig : float
Feasibility of original solution
cv_orig : array-like
Excess constraint violation for the original solution
Returns
-------
accepted : bool
"""
if feasible_orig and feasible_trial:
return energy_trial <= energy_orig
elif feasible_trial and not feasible_orig:
return True
elif not feasible_trial and (cv_trial <= cv_orig).all():
# cv_trial < cv_orig would imply that both trial and orig are not
# feasible
return True
return False
def __next__(self):
"""
Evolve the population by a single generation
Returns
-------
x : ndarray
The best solution from the solver.
fun : float
Value of objective function obtained from the best solution.
"""
# the population may have just been initialized (all entries are
# np.inf). If it has you have to calculate the initial energies
if np.all(np.isinf(self.population_energies)):
self.feasible, self.constraint_violation = (
self._calculate_population_feasibilities(self.population))
# only need to work out population energies for those that are
# feasible
self.population_energies[self.feasible] = (
self._calculate_population_energies(
self.population[self.feasible]))
self._promote_lowest_energy()
if self.dither is not None:
self.scale = self.random_number_generator.uniform(self.dither[0],
self.dither[1])
if self._updating == 'immediate':
# update best solution immediately
for candidate in range(self.num_population_members):
if self._nfev > self.maxfun:
raise StopIteration
# create a trial solution
trial = self._mutate(candidate)
# ensuring that it's in the range [0, 1)
self._ensure_constraint(trial)
# scale from [0, 1) to the actual parameter value
parameters = self._scale_parameters(trial)
# determine the energy of the objective function
if self._wrapped_constraints:
cv = self._constraint_violation_fn(parameters)
feasible = False
energy = np.inf
if not np.sum(cv) > 0:
# solution is feasible
feasible = True
energy = self.func(parameters)
self._nfev += 1
else:
feasible = True
cv = np.atleast_2d([0.])
energy = self.func(parameters)
self._nfev += 1
# compare trial and population member
if self._accept_trial(energy, feasible, cv,
self.population_energies[candidate],
self.feasible[candidate],
self.constraint_violation[candidate]):
self.population[candidate] = trial
self.population_energies[candidate] = energy
self.feasible[candidate] = feasible
self.constraint_violation[candidate] = cv
# if the trial candidate is also better than the best
# solution then promote it.
if self._accept_trial(energy, feasible, cv,
self.population_energies[0],
self.feasible[0],
self.constraint_violation[0]):
self._promote_lowest_energy()
elif self._updating == 'deferred':
# update best solution once per generation
if self._nfev >= self.maxfun:
raise StopIteration
# 'deferred' approach, vectorised form.
# create trial solutions
trial_pop = np.array(
[self._mutate(i) for i in range(self.num_population_members)])
# enforce bounds
self._ensure_constraint(trial_pop)
# determine the energies of the objective function, but only for
# feasible trials
feasible, cv = self._calculate_population_feasibilities(trial_pop)
trial_energies = np.full(self.num_population_members, np.inf)
# only calculate for feasible entries
trial_energies[feasible] = self._calculate_population_energies(
trial_pop[feasible])
# which solutions are 'improved'?
loc = [self._accept_trial(*val) for val in
zip(trial_energies, feasible, cv, self.population_energies,
self.feasible, self.constraint_violation)]
loc = np.array(loc)
self.population = np.where(loc[:, np.newaxis],
trial_pop,
self.population)
self.population_energies = np.where(loc,
trial_energies,
self.population_energies)
self.feasible = np.where(loc,
feasible,
self.feasible)
self.constraint_violation = np.where(loc[:, np.newaxis],
cv,
self.constraint_violation)
# make sure the best solution is updated if updating='deferred'.
# put the lowest energy into the best solution position.
self._promote_lowest_energy()
return self.x, self.population_energies[0]
next = __next__
def _scale_parameters(self, trial):
"""Scale from a number between 0 and 1 to parameters."""
return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2
def _unscale_parameters(self, parameters):
"""Scale from parameters to a number between 0 and 1."""
return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5
def _ensure_constraint(self, trial):
"""Make sure the parameters lie between the limits."""
mask = np.where((trial > 1) | (trial < 0))
trial[mask] = self.random_number_generator.uniform(size=mask[0].shape)
def _mutate(self, candidate):
"""Create a trial vector based on a mutation strategy."""
trial = np.copy(self.population[candidate])
rng = self.random_number_generator
fill_point = rng.choice(self.parameter_count)
if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
bprime = self.mutation_func(candidate,
self._select_samples(candidate, 5))
else:
bprime = self.mutation_func(self._select_samples(candidate, 5))
if self.strategy in self._binomial:
crossovers = rng.uniform(size=self.parameter_count)
crossovers = crossovers < self.cross_over_probability
# the last one is always from the bprime vector for binomial
# If you fill in modulo with a loop you have to set the last one to
# true. If you don't use a loop then you can have any random entry
# be True.
crossovers[fill_point] = True
trial = np.where(crossovers, bprime, trial)
return trial
elif self.strategy in self._exponential:
i = 0
crossovers = rng.uniform(size=self.parameter_count)
crossovers = crossovers < self.cross_over_probability
while (i < self.parameter_count and crossovers[i]):
trial[fill_point] = bprime[fill_point]
fill_point = (fill_point + 1) % self.parameter_count
i += 1
return trial
def _best1(self, samples):
"""best1bin, best1exp"""
r0, r1 = samples[:2]
return (self.population[0] + self.scale *
(self.population[r0] - self.population[r1]))
def _rand1(self, samples):
"""rand1bin, rand1exp"""
r0, r1, r2 = samples[:3]
return (self.population[r0] + self.scale *
(self.population[r1] - self.population[r2]))
def _randtobest1(self, samples):
"""randtobest1bin, randtobest1exp"""
r0, r1, r2 = samples[:3]
bprime = np.copy(self.population[r0])
bprime += self.scale * (self.population[0] - bprime)
bprime += self.scale * (self.population[r1] -
self.population[r2])
return bprime
def _currenttobest1(self, candidate, samples):
"""currenttobest1bin, currenttobest1exp"""
r0, r1 = samples[:2]
bprime = (self.population[candidate] + self.scale *
(self.population[0] - self.population[candidate] +
self.population[r0] - self.population[r1]))
return bprime
def _best2(self, samples):
"""best2bin, best2exp"""
r0, r1, r2, r3 = samples[:4]
bprime = (self.population[0] + self.scale *
(self.population[r0] + self.population[r1] -
self.population[r2] - self.population[r3]))
return bprime
def _rand2(self, samples):
"""rand2bin, rand2exp"""
r0, r1, r2, r3, r4 = samples
bprime = (self.population[r0] + self.scale *
(self.population[r1] + self.population[r2] -
self.population[r3] - self.population[r4]))
return bprime
def _select_samples(self, candidate, number_samples):
"""
obtain random integers from range(self.num_population_members),
without replacement. You can't have the original candidate either.
"""
idxs = list(range(self.num_population_members))
idxs.remove(candidate)
self.random_number_generator.shuffle(idxs)
idxs = idxs[:number_samples]
return idxs
class _FunctionWrapper(object):
"""
Object to wrap user cost function, allowing picklability
"""
def __init__(self, f, args):
self.f = f
self.args = [] if args is None else args
def __call__(self, x):
return self.f(x, *self.args)
class _ConstraintWrapper(object):
"""Object to wrap/evaluate user defined constraints.
Very similar in practice to `PreparedConstraint`, except that no evaluation
of jac/hess is performed (explicit or implicit).
If created successfully, it will contain the attributes listed below.
Parameters
----------
constraint : {`NonlinearConstraint`, `LinearConstraint`, `Bounds`}
Constraint to check and prepare.
x0 : array_like
Initial vector of independent variables.
Attributes
----------
fun : callable
Function defining the constraint wrapped by one of the convenience
classes.
bounds : 2-tuple
Contains lower and upper bounds for the constraints --- lb and ub.
These are converted to ndarray and have a size equal to the number of
the constraints.
"""
def __init__(self, constraint, x0):
self.constraint = constraint
if isinstance(constraint, NonlinearConstraint):
def fun(x):
return np.atleast_1d(constraint.fun(x))
elif isinstance(constraint, LinearConstraint):
def fun(x):
if issparse(constraint.A):
A = constraint.A
else:
A = np.atleast_2d(constraint.A)
return A.dot(x)
elif isinstance(constraint, Bounds):
def fun(x):
return x
else:
raise ValueError("`constraint` of an unknown type is passed.")
self.fun = fun
lb = np.asarray(constraint.lb, dtype=float)
ub = np.asarray(constraint.ub, dtype=float)
f0 = fun(x0)
m = f0.size
if lb.ndim == 0:
lb = np.resize(lb, m)
if ub.ndim == 0:
ub = np.resize(ub, m)
self.bounds = (lb, ub)
def __call__(self, x):
return np.atleast_1d(self.fun(x))
def violation(self, x):
"""How much the constraint is exceeded by.
Parameters
----------
x : array-like
Vector of independent variables
Returns
-------
excess : array-like
How much the constraint is exceeded by, for each of the
constraints specified by `_ConstraintWrapper.fun`.
"""
ev = self.fun(np.asarray(x))
excess_lb = np.maximum(self.bounds[0] - ev, 0)
excess_ub = np.maximum(ev - self.bounds[1], 0)
return excess_lb + excess_ub