forked from 170010011/fr
56 lines
1.7 KiB
Python
56 lines
1.7 KiB
Python
|
from typing import List
|
||
|
|
||
|
from pandas import DataFrame, concat
|
||
|
|
||
|
|
||
|
def _check_mixed_float(df, dtype=None):
|
||
|
# float16 are most likely to be upcasted to float32
|
||
|
dtypes = {"A": "float32", "B": "float32", "C": "float16", "D": "float64"}
|
||
|
if isinstance(dtype, str):
|
||
|
dtypes = {k: dtype for k, v in dtypes.items()}
|
||
|
elif isinstance(dtype, dict):
|
||
|
dtypes.update(dtype)
|
||
|
if dtypes.get("A"):
|
||
|
assert df.dtypes["A"] == dtypes["A"]
|
||
|
if dtypes.get("B"):
|
||
|
assert df.dtypes["B"] == dtypes["B"]
|
||
|
if dtypes.get("C"):
|
||
|
assert df.dtypes["C"] == dtypes["C"]
|
||
|
if dtypes.get("D"):
|
||
|
assert df.dtypes["D"] == dtypes["D"]
|
||
|
|
||
|
|
||
|
def _check_mixed_int(df, dtype=None):
|
||
|
dtypes = {"A": "int32", "B": "uint64", "C": "uint8", "D": "int64"}
|
||
|
if isinstance(dtype, str):
|
||
|
dtypes = {k: dtype for k, v in dtypes.items()}
|
||
|
elif isinstance(dtype, dict):
|
||
|
dtypes.update(dtype)
|
||
|
if dtypes.get("A"):
|
||
|
assert df.dtypes["A"] == dtypes["A"]
|
||
|
if dtypes.get("B"):
|
||
|
assert df.dtypes["B"] == dtypes["B"]
|
||
|
if dtypes.get("C"):
|
||
|
assert df.dtypes["C"] == dtypes["C"]
|
||
|
if dtypes.get("D"):
|
||
|
assert df.dtypes["D"] == dtypes["D"]
|
||
|
|
||
|
|
||
|
def zip_frames(frames: List[DataFrame], axis: int = 1) -> DataFrame:
|
||
|
"""
|
||
|
take a list of frames, zip them together under the
|
||
|
assumption that these all have the first frames' index/columns.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
new_frame : DataFrame
|
||
|
"""
|
||
|
if axis == 1:
|
||
|
columns = frames[0].columns
|
||
|
zipped = [f.loc[:, c] for c in columns for f in frames]
|
||
|
return concat(zipped, axis=1)
|
||
|
else:
|
||
|
index = frames[0].index
|
||
|
zipped = [f.loc[i, :] for i in index for f in frames]
|
||
|
return DataFrame(zipped)
|