minix3/kernel/arch/i386/arch_clock.c

386 lines
8.5 KiB
C

/* i386-specific clock functions. */
#include <machine/ports.h>
#include <minix/portio.h>
#include "kernel/kernel.h"
#include "kernel/clock.h"
#include "kernel/interrupt.h"
#include <minix/u64.h>
#include "glo.h"
#include "kernel/profile.h"
#ifdef USE_APIC
#include "apic.h"
#endif
#include "kernel/spinlock.h"
#ifdef CONFIG_SMP
#include "kernel/smp.h"
#endif
#define CLOCK_ACK_BIT 0x80 /* PS/2 clock interrupt acknowledge bit */
/* Clock parameters. */
#define COUNTER_FREQ (2*TIMER_FREQ) /* counter frequency using square wave */
#define LATCH_COUNT 0x00 /* cc00xxxx, c = channel, x = any */
#define SQUARE_WAVE 0x36 /* ccaammmb, a = access, m = mode, b = BCD */
/* 11x11, 11 = LSB then MSB, x11 = sq wave */
#define TIMER_FREQ 1193182 /* clock frequency for timer in PC and AT */
#define TIMER_COUNT(freq) (TIMER_FREQ/(freq)) /* initial value for counter*/
static irq_hook_t pic_timer_hook; /* interrupt handler hook */
static unsigned probe_ticks;
static u64_t tsc0, tsc1;
#define PROBE_TICKS (system_hz / 10)
static unsigned tsc_per_ms[CONFIG_MAX_CPUS];
/*===========================================================================*
* init_8235A_timer *
*===========================================================================*/
int init_8253A_timer(const unsigned freq)
{
/* Initialize channel 0 of the 8253A timer to, e.g., 60 Hz,
* and register the CLOCK task's interrupt handler to be run
* on every clock tick.
*/
outb(TIMER_MODE, SQUARE_WAVE); /* run continuously */
outb(TIMER0, (TIMER_COUNT(freq) & 0xff)); /* timer low byte */
outb(TIMER0, TIMER_COUNT(freq) >> 8); /* timer high byte */
return OK;
}
/*===========================================================================*
* stop_8235A_timer *
*===========================================================================*/
void stop_8253A_timer(void)
{
/* Reset the clock to the BIOS rate. (For rebooting.) */
outb(TIMER_MODE, 0x36);
outb(TIMER0, 0);
outb(TIMER0, 0);
}
void arch_timer_int_handler(void)
{
}
static int calib_cpu_handler(irq_hook_t * UNUSED(hook))
{
u64_t tsc;
probe_ticks++;
read_tsc_64(&tsc);
if (probe_ticks == 1) {
tsc0 = tsc;
}
else if (probe_ticks == PROBE_TICKS) {
tsc1 = tsc;
}
/* just in case we are in an SMP single cpu fallback mode */
BKL_UNLOCK();
return 1;
}
static void estimate_cpu_freq(void)
{
u64_t tsc_delta;
u64_t cpu_freq;
irq_hook_t calib_cpu;
/* set the probe, we use the legacy timer, IRQ 0 */
put_irq_handler(&calib_cpu, CLOCK_IRQ, calib_cpu_handler);
/* just in case we are in an SMP single cpu fallback mode */
BKL_UNLOCK();
/* set the PIC timer to get some time */
intr_enable();
/* loop for some time to get a sample */
while(probe_ticks < PROBE_TICKS) {
intr_enable();
}
intr_disable();
/* just in case we are in an SMP single cpu fallback mode */
BKL_LOCK();
/* remove the probe */
rm_irq_handler(&calib_cpu);
tsc_delta = tsc1 - tsc0;
cpu_freq = (tsc_delta / (PROBE_TICKS - 1)) * system_hz;
cpu_set_freq(cpuid, cpu_freq);
cpu_info[cpuid].freq = (unsigned long)(cpu_freq / 1000000);
BOOT_VERBOSE(cpu_print_freq(cpuid));
}
int init_local_timer(unsigned freq)
{
#ifdef USE_APIC
/* if we know the address, lapic is enabled and we should use it */
if (lapic_addr) {
unsigned cpu = cpuid;
tsc_per_ms[cpu] = (unsigned long)(cpu_get_freq(cpu) / 1000);
lapic_set_timer_one_shot(1000000 / system_hz);
} else {
DEBUGBASIC(("Initiating legacy i8253 timer\n"));
#else
{
#endif
init_8253A_timer(freq);
estimate_cpu_freq();
/* always only 1 cpu in the system */
tsc_per_ms[0] = (unsigned long)(cpu_get_freq(0) / 1000);
}
return 0;
}
void stop_local_timer(void)
{
#ifdef USE_APIC
if (lapic_addr) {
lapic_stop_timer();
apic_eoi();
} else
#endif
{
stop_8253A_timer();
}
}
void restart_local_timer(void)
{
#ifdef USE_APIC
if (lapic_addr) {
lapic_restart_timer();
}
#endif
}
int register_local_timer_handler(const irq_handler_t handler)
{
#ifdef USE_APIC
if (lapic_addr) {
/* Using APIC, it is configured in apic_idt_init() */
BOOT_VERBOSE(printf("Using LAPIC timer as tick source\n"));
} else
#endif
{
/* Using PIC, Initialize the CLOCK's interrupt hook. */
pic_timer_hook.proc_nr_e = NONE;
pic_timer_hook.irq = CLOCK_IRQ;
put_irq_handler(&pic_timer_hook, CLOCK_IRQ, handler);
}
return 0;
}
void cycles_accounting_init(void)
{
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
#endif
read_tsc_64(get_cpu_var_ptr(cpu, tsc_ctr_switch));
get_cpu_var(cpu, cpu_last_tsc) = 0;
get_cpu_var(cpu, cpu_last_idle) = 0;
}
void context_stop(struct proc * p)
{
u64_t tsc, tsc_delta;
u64_t * __tsc_ctr_switch = get_cpulocal_var_ptr(tsc_ctr_switch);
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
int must_bkl_unlock = 0;
/*
* This function is called only if we switch from kernel to user or idle
* or back. Therefore this is a perfect location to place the big kernel
* lock which will hopefully disappear soon.
*
* If we stop accounting for KERNEL we must unlock the BKL. If account
* for IDLE we must not hold the lock
*/
if (p == proc_addr(KERNEL)) {
u64_t tmp;
read_tsc_64(&tsc);
tmp = tsc - *__tsc_ctr_switch;
kernel_ticks[cpu] = kernel_ticks[cpu] + tmp;
p->p_cycles = p->p_cycles + tmp;
must_bkl_unlock = 1;
} else {
u64_t bkl_tsc;
atomic_t succ;
read_tsc_64(&bkl_tsc);
/* this only gives a good estimate */
succ = big_kernel_lock.val;
BKL_LOCK();
read_tsc_64(&tsc);
bkl_ticks[cpu] = bkl_ticks[cpu] + tsc - bkl_tsc;
bkl_tries[cpu]++;
bkl_succ[cpu] += !(!(succ == 0));
p->p_cycles = p->p_cycles + tsc - *__tsc_ctr_switch;
#ifdef CONFIG_SMP
/*
* Since at the time we got a scheduling IPI we might have been
* waiting for BKL already, we may miss it due to a similar IPI to
* the cpu which is already waiting for us to handle its. This
* results in a live-lock of these two cpus.
*
* Therefore we always check if there is one pending and if so,
* we handle it straight away so the other cpu can continue and
* we do not deadlock.
*/
smp_sched_handler();
#endif
}
#else
read_tsc_64(&tsc);
p->p_cycles = p->p_cycles + tsc - *__tsc_ctr_switch;
#endif
tsc_delta = tsc - *__tsc_ctr_switch;
if (kbill_ipc) {
kbill_ipc->p_kipc_cycles =
kbill_ipc->p_kipc_cycles + tsc_delta;
kbill_ipc = NULL;
}
if (kbill_kcall) {
kbill_kcall->p_kcall_cycles =
kbill_kcall->p_kcall_cycles + tsc_delta;
kbill_kcall = NULL;
}
/*
* deduct the just consumed cpu cycles from the cpu time left for this
* process during its current quantum. Skip IDLE and other pseudo kernel
* tasks
*/
if (p->p_endpoint >= 0) {
#if DEBUG_RACE
p->p_cpu_time_left = 0;
#else
/* if (tsc_delta < p->p_cpu_time_left) in 64bit */
if (ex64hi(tsc_delta) < ex64hi(p->p_cpu_time_left) ||
(ex64hi(tsc_delta) == ex64hi(p->p_cpu_time_left) &&
ex64lo(tsc_delta) < ex64lo(p->p_cpu_time_left)))
p->p_cpu_time_left = p->p_cpu_time_left - tsc_delta;
else {
p->p_cpu_time_left = 0;
}
#endif
}
*__tsc_ctr_switch = tsc;
#ifdef CONFIG_SMP
if(must_bkl_unlock) {
BKL_UNLOCK();
}
#endif
}
void context_stop_idle(void)
{
int is_idle;
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
#endif
is_idle = get_cpu_var(cpu, cpu_is_idle);
get_cpu_var(cpu, cpu_is_idle) = 0;
context_stop(get_cpulocal_var_ptr(idle_proc));
if (is_idle)
restart_local_timer();
#if SPROFILE
if (sprofiling)
get_cpulocal_var(idle_interrupted) = 1;
#endif
}
u64_t ms_2_cpu_time(unsigned ms)
{
return (u64_t)tsc_per_ms[cpuid] * ms;
}
unsigned cpu_time_2_ms(u64_t cpu_time)
{
return (unsigned long)(cpu_time / tsc_per_ms[cpuid]);
}
short cpu_load(void)
{
u64_t current_tsc, *current_idle;
u64_t tsc_delta, idle_delta, busy;
struct proc *idle;
short load;
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
#endif
u64_t *last_tsc, *last_idle;
last_tsc = get_cpu_var_ptr(cpu, cpu_last_tsc);
last_idle = get_cpu_var_ptr(cpu, cpu_last_idle);
idle = get_cpu_var_ptr(cpu, idle_proc);;
read_tsc_64(&current_tsc);
current_idle = &idle->p_cycles; /* ptr to idle proc */
/* calculate load since last cpu_load invocation */
if (*last_tsc) {
tsc_delta = current_tsc - *last_tsc;
idle_delta = *current_idle - *last_idle;
busy = tsc_delta - idle_delta;
busy = busy * 100;
load = ex64lo(busy / tsc_delta);
if (load > 100)
load = 100;
} else
load = 0;
*last_tsc = current_tsc;
*last_idle = *current_idle;
return load;
}
void busy_delay_ms(int ms)
{
u64_t cycles = ms_2_cpu_time(ms), tsc0, tsc, tsc1;
read_tsc_64(&tsc0);
tsc1 = tsc0 + cycles;
do { read_tsc_64(&tsc); } while(tsc < tsc1);
return;
}