872 lines
28 KiB
C
872 lines
28 KiB
C
/* This file handles signals, which are asynchronous events and are generally
|
|
* a messy and unpleasant business. Signals can be generated by the KILL
|
|
* system call, or from the keyboard (SIGINT) or from the clock (SIGALRM).
|
|
* In all cases control eventually passes to check_sig() to see which processes
|
|
* can be signaled. The actual signaling is done by sig_proc().
|
|
*
|
|
* The entry points into this file are:
|
|
* do_sigaction: perform the SIGACTION system call
|
|
* do_sigpending: perform the SIGPENDING system call
|
|
* do_sigprocmask: perform the SIGPROCMASK system call
|
|
* do_sigreturn: perform the SIGRETURN system call
|
|
* do_sigsuspend: perform the SIGSUSPEND system call
|
|
* do_kill: perform the KILL system call
|
|
* process_ksig: process a signal an behalf of the kernel
|
|
* sig_proc: interrupt or terminate a signaled process
|
|
* check_sig: check which processes to signal with sig_proc()
|
|
* check_pending: check if a pending signal can now be delivered
|
|
* restart_sigs: restart signal work after finishing a VFS call
|
|
*/
|
|
|
|
#include "pm.h"
|
|
#include <sys/stat.h>
|
|
#include <sys/ptrace.h>
|
|
#include <minix/callnr.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/com.h>
|
|
#include <minix/vm.h>
|
|
#include <signal.h>
|
|
#include <sys/resource.h>
|
|
#include <assert.h>
|
|
#include "mproc.h"
|
|
|
|
static int unpause(struct mproc *rmp);
|
|
static int sig_send(struct mproc *rmp, int signo);
|
|
static void sig_proc_exit(struct mproc *rmp, int signo);
|
|
|
|
/*===========================================================================*
|
|
* do_sigaction *
|
|
*===========================================================================*/
|
|
int do_sigaction(void)
|
|
{
|
|
int r, sig_nr;
|
|
struct sigaction svec;
|
|
struct sigaction *svp;
|
|
|
|
assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
|
|
|
|
sig_nr = m_in.m_lc_pm_sig.nr;
|
|
if (sig_nr == SIGKILL) return(OK);
|
|
if (sig_nr < 1 || sig_nr >= _NSIG) return(EINVAL);
|
|
|
|
svp = &mp->mp_sigact[sig_nr];
|
|
if (m_in.m_lc_pm_sig.oact != 0) {
|
|
r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp, who_e,
|
|
m_in.m_lc_pm_sig.oact, (phys_bytes) sizeof(svec));
|
|
if (r != OK) return(r);
|
|
}
|
|
|
|
if (m_in.m_lc_pm_sig.act == 0)
|
|
return(OK);
|
|
|
|
/* Read in the sigaction structure. */
|
|
r = sys_datacopy(who_e, m_in.m_lc_pm_sig.act, PM_PROC_NR, (vir_bytes) &svec,
|
|
(phys_bytes) sizeof(svec));
|
|
if (r != OK) return(r);
|
|
|
|
if (svec.sa_handler == SIG_IGN) {
|
|
sigaddset(&mp->mp_ignore, sig_nr);
|
|
sigdelset(&mp->mp_sigpending, sig_nr);
|
|
sigdelset(&mp->mp_ksigpending, sig_nr);
|
|
sigdelset(&mp->mp_catch, sig_nr);
|
|
} else if (svec.sa_handler == SIG_DFL) {
|
|
sigdelset(&mp->mp_ignore, sig_nr);
|
|
sigdelset(&mp->mp_catch, sig_nr);
|
|
} else {
|
|
sigdelset(&mp->mp_ignore, sig_nr);
|
|
sigaddset(&mp->mp_catch, sig_nr);
|
|
}
|
|
mp->mp_sigact[sig_nr].sa_handler = svec.sa_handler;
|
|
sigdelset(&svec.sa_mask, SIGKILL);
|
|
sigdelset(&svec.sa_mask, SIGSTOP);
|
|
mp->mp_sigact[sig_nr].sa_mask = svec.sa_mask;
|
|
mp->mp_sigact[sig_nr].sa_flags = svec.sa_flags;
|
|
mp->mp_sigreturn = m_in.m_lc_pm_sig.ret;
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_sigpending *
|
|
*===========================================================================*/
|
|
int do_sigpending(void)
|
|
{
|
|
assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
|
|
|
|
mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigpending;
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_sigprocmask *
|
|
*===========================================================================*/
|
|
int do_sigprocmask(void)
|
|
{
|
|
/* Note that the library interface passes the actual mask in sigmask_set,
|
|
* not a pointer to the mask, in order to save a copy. Similarly,
|
|
* the old mask is placed in the return message which the library
|
|
* interface copies (if requested) to the user specified address.
|
|
*
|
|
* The library interface must set SIG_INQUIRE if the 'act' argument
|
|
* is NULL.
|
|
*
|
|
* KILL and STOP can't be masked.
|
|
*/
|
|
sigset_t set;
|
|
int i;
|
|
|
|
assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
|
|
|
|
set = m_in.m_lc_pm_sigset.set;
|
|
mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigmask;
|
|
|
|
switch (m_in.m_lc_pm_sigset.how) {
|
|
case SIG_BLOCK:
|
|
sigdelset(&set, SIGKILL);
|
|
sigdelset(&set, SIGSTOP);
|
|
for (i = 1; i < _NSIG; i++) {
|
|
if (sigismember(&set, i))
|
|
sigaddset(&mp->mp_sigmask, i);
|
|
}
|
|
break;
|
|
|
|
case SIG_UNBLOCK:
|
|
for (i = 1; i < _NSIG; i++) {
|
|
if (sigismember(&set, i))
|
|
sigdelset(&mp->mp_sigmask, i);
|
|
}
|
|
check_pending(mp);
|
|
break;
|
|
|
|
case SIG_SETMASK:
|
|
sigdelset(&set, SIGKILL);
|
|
sigdelset(&set, SIGSTOP);
|
|
mp->mp_sigmask = set;
|
|
check_pending(mp);
|
|
break;
|
|
|
|
case SIG_INQUIRE:
|
|
break;
|
|
|
|
default:
|
|
return(EINVAL);
|
|
break;
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_sigsuspend *
|
|
*===========================================================================*/
|
|
int do_sigsuspend(void)
|
|
{
|
|
assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
|
|
|
|
mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */
|
|
mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
|
|
sigdelset(&mp->mp_sigmask, SIGKILL);
|
|
sigdelset(&mp->mp_sigmask, SIGSTOP);
|
|
mp->mp_flags |= SIGSUSPENDED;
|
|
check_pending(mp);
|
|
return(SUSPEND);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_sigreturn *
|
|
*===========================================================================*/
|
|
int do_sigreturn(void)
|
|
{
|
|
/* A user signal handler is done. Restore context and check for
|
|
* pending unblocked signals.
|
|
*/
|
|
int r;
|
|
|
|
assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
|
|
|
|
mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
|
|
sigdelset(&mp->mp_sigmask, SIGKILL);
|
|
sigdelset(&mp->mp_sigmask, SIGSTOP);
|
|
|
|
r = sys_sigreturn(who_e, (struct sigmsg *)m_in.m_lc_pm_sigset.ctx);
|
|
check_pending(mp);
|
|
return(r);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_kill *
|
|
*===========================================================================*/
|
|
int do_kill(void)
|
|
{
|
|
/* Perform the kill(pid, signo) system call. */
|
|
|
|
return check_sig(m_in.m_lc_pm_sig.pid, m_in.m_lc_pm_sig.nr, FALSE /* ksig */);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_srv_kill *
|
|
*===========================================================================*/
|
|
int do_srv_kill(void)
|
|
{
|
|
/* Perform the srv_kill(pid, signo) system call. */
|
|
|
|
/* Only RS is allowed to use srv_kill. */
|
|
if (mp->mp_endpoint != RS_PROC_NR)
|
|
return EPERM;
|
|
|
|
/* Pretend the signal comes from the kernel when RS wants to deliver a signal
|
|
* to a system process. RS sends a SIGKILL when it wants to perform cleanup.
|
|
* In that case, ksig == TRUE forces PM to exit the process immediately.
|
|
*/
|
|
return check_sig(m_in.m_rs_pm_srv_kill.pid, m_in.m_rs_pm_srv_kill.nr,
|
|
TRUE /* ksig */);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* stop_proc *
|
|
*===========================================================================*/
|
|
static int stop_proc(struct mproc *rmp, int may_delay)
|
|
{
|
|
/* Try to stop the given process in the kernel. If successful, mark the process
|
|
* as stopped and return TRUE. If the process is still busy sending a message,
|
|
* the behavior depends on the 'may_delay' parameter. If set, the process will
|
|
* be marked as having a delay call pending, and the function returns FALSE. If
|
|
* not set, the caller already knows that the process has no delay call, and PM
|
|
* will panic.
|
|
*/
|
|
int r;
|
|
|
|
assert(!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL | UNPAUSED)));
|
|
|
|
r = sys_delay_stop(rmp->mp_endpoint);
|
|
|
|
/* If the process is still busy sending a message, the kernel will give us
|
|
* EBUSY now and send a SIGSNDELAY to the process as soon as sending is done.
|
|
*/
|
|
switch (r) {
|
|
case OK:
|
|
rmp->mp_flags |= PROC_STOPPED;
|
|
|
|
return TRUE;
|
|
|
|
case EBUSY:
|
|
if (!may_delay)
|
|
panic("stop_proc: unexpected delay call");
|
|
|
|
rmp->mp_flags |= DELAY_CALL;
|
|
|
|
return FALSE;
|
|
|
|
default:
|
|
panic("sys_delay_stop failed: %d", r);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* try_resume_proc *
|
|
*===========================================================================*/
|
|
static void try_resume_proc(struct mproc *rmp)
|
|
{
|
|
/* Resume the given process if possible. */
|
|
int r;
|
|
|
|
assert(rmp->mp_flags & PROC_STOPPED);
|
|
|
|
/* If the process is blocked on a VFS call, do not resume it now. Most likely * it will be unpausing, in which case the process must remain stopped.
|
|
* Otherwise, it will still be resumed once the VFS call returns. If the
|
|
* process has died, do not resume it either.
|
|
*/
|
|
if (rmp->mp_flags & (VFS_CALL | EXITING))
|
|
return;
|
|
|
|
if ((r = sys_resume(rmp->mp_endpoint)) != OK)
|
|
panic("sys_resume failed: %d", r);
|
|
|
|
/* Also unset the unpaused flag. We can safely assume that a stopped process
|
|
* need only be unpaused once, but once it is resumed, all bets are off.
|
|
*/
|
|
rmp->mp_flags &= ~(PROC_STOPPED | UNPAUSED);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* process_ksig *
|
|
*===========================================================================*/
|
|
int process_ksig(endpoint_t proc_nr_e, int signo)
|
|
{
|
|
register struct mproc *rmp;
|
|
int proc_nr;
|
|
pid_t proc_id, id;
|
|
|
|
if(pm_isokendpt(proc_nr_e, &proc_nr) != OK) {
|
|
printf("PM: process_ksig: %d?? not ok\n", proc_nr_e);
|
|
return EDEADEPT; /* process is gone. */
|
|
}
|
|
rmp = &mproc[proc_nr];
|
|
if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
|
|
#if 0
|
|
printf("PM: process_ksig: %d?? exiting / not in use\n", proc_nr_e);
|
|
#endif
|
|
return EDEADEPT; /* process is gone. */
|
|
}
|
|
proc_id = rmp->mp_pid;
|
|
mp = &mproc[0]; /* pretend signals are from PM */
|
|
mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */
|
|
|
|
/* For SIGVTALRM and SIGPROF, see if we need to restart a
|
|
* virtual timer. For SIGINT, SIGINFO, SIGWINCH and SIGQUIT, use proc_id 0
|
|
* to indicate a broadcast to the recipient's process group. For
|
|
* SIGKILL, use proc_id -1 to indicate a systemwide broadcast.
|
|
*/
|
|
switch (signo) {
|
|
case SIGINT:
|
|
case SIGQUIT:
|
|
case SIGWINCH:
|
|
case SIGINFO:
|
|
id = 0; break; /* broadcast to process group */
|
|
case SIGVTALRM:
|
|
case SIGPROF:
|
|
check_vtimer(proc_nr, signo);
|
|
/* fall-through */
|
|
default:
|
|
id = proc_id;
|
|
break;
|
|
}
|
|
check_sig(id, signo, TRUE /* ksig */);
|
|
|
|
/* If SIGSNDELAY is set, an earlier sys_stop() failed because the process was
|
|
* still sending, and the kernel hereby tells us that the process is now done
|
|
* with that. We can now try to resume what we planned to do in the first
|
|
* place: set up a signal handler. However, the process's message may have
|
|
* been a call to PM, in which case the process may have changed any of its
|
|
* signal settings. The process may also have forked, exited etcetera.
|
|
*/
|
|
if (signo == SIGSNDELAY && (rmp->mp_flags & DELAY_CALL)) {
|
|
/* When getting SIGSNDELAY, the process is stopped at least until the
|
|
* receipt of the SIGSNDELAY signal is acknowledged to the kernel. The
|
|
* process is not stopped on PROC_STOP in the kernel. However, now that
|
|
* there is no longer a delay call, stop_proc() is guaranteed to
|
|
* succeed immediately.
|
|
*/
|
|
rmp->mp_flags &= ~DELAY_CALL;
|
|
|
|
assert(!(rmp->mp_flags & PROC_STOPPED));
|
|
|
|
/* If the delay call was to PM, it may have resulted in a VFS call. In
|
|
* that case, we must wait with further signal processing until VFS has
|
|
* replied. Stop the process.
|
|
*/
|
|
if (rmp->mp_flags & VFS_CALL) {
|
|
stop_proc(rmp, FALSE /*may_delay*/);
|
|
|
|
return OK;
|
|
}
|
|
|
|
/* Process as many normal signals as possible. */
|
|
check_pending(rmp);
|
|
|
|
assert(!(rmp->mp_flags & DELAY_CALL));
|
|
}
|
|
|
|
/* See if the process is still alive */
|
|
if ((mproc[proc_nr].mp_flags & (IN_USE | EXITING)) == IN_USE) {
|
|
return OK; /* signal has been delivered */
|
|
}
|
|
else {
|
|
return EDEADEPT; /* process is gone */
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sig_proc *
|
|
*===========================================================================*/
|
|
void sig_proc(rmp, signo, trace, ksig)
|
|
register struct mproc *rmp; /* pointer to the process to be signaled */
|
|
int signo; /* signal to send to process (1 to _NSIG-1) */
|
|
int trace; /* pass signal to tracer first? */
|
|
int ksig; /* non-zero means signal comes from kernel */
|
|
{
|
|
/* Send a signal to a process. Check to see if the signal is to be caught,
|
|
* ignored, tranformed into a message (for system processes) or blocked.
|
|
* - If the signal is to be transformed into a message, request the KERNEL to
|
|
* send the target process a system notification with the pending signal as an
|
|
* argument.
|
|
* - If the signal is to be caught, request the KERNEL to push a sigcontext
|
|
* structure and a sigframe structure onto the catcher's stack. Also, KERNEL
|
|
* will reset the program counter and stack pointer, so that when the process
|
|
* next runs, it will be executing the signal handler. When the signal handler
|
|
* returns, sigreturn(2) will be called. Then KERNEL will restore the signal
|
|
* context from the sigcontext structure.
|
|
* If there is insufficient stack space, kill the process.
|
|
*/
|
|
int slot, badignore;
|
|
|
|
slot = (int) (rmp - mproc);
|
|
if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
|
|
panic("PM: signal %d sent to exiting process %d\n", signo, slot);
|
|
}
|
|
|
|
if (trace == TRUE && rmp->mp_tracer != NO_TRACER && signo != SIGKILL) {
|
|
/* Signal should be passed to the debugger first.
|
|
* This happens before any checks on block/ignore masks; otherwise,
|
|
* the process itself could block/ignore debugger signals.
|
|
*/
|
|
|
|
sigaddset(&rmp->mp_sigtrace, signo);
|
|
|
|
if (!(rmp->mp_flags & TRACE_STOPPED))
|
|
trace_stop(rmp, signo); /* a signal causes it to stop */
|
|
|
|
return;
|
|
}
|
|
|
|
if (rmp->mp_flags & VFS_CALL) {
|
|
sigaddset(&rmp->mp_sigpending, signo);
|
|
if(ksig)
|
|
sigaddset(&rmp->mp_ksigpending, signo);
|
|
|
|
/* Process the signal once VFS replies. Stop the process in the
|
|
* meantime, so that it cannot make another call after the VFS reply
|
|
* comes in but before we look at its signals again. Since we always
|
|
* stop the process to deliver signals during a VFS call, the
|
|
* PROC_STOPPED flag doubles as an indicator in restart_sigs() that
|
|
* signals must be rechecked after a VFS reply comes in.
|
|
*/
|
|
if (!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL))) {
|
|
/* If a VFS call is ongoing and the process is not yet stopped,
|
|
* the process must have made a call to PM. Therefore, there
|
|
* can be no delay calls in this case.
|
|
*/
|
|
stop_proc(rmp, FALSE /*delay_call*/);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle system signals for system processes first. */
|
|
if(rmp->mp_flags & PRIV_PROC) {
|
|
/* Always skip signals for PM (only necessary when broadcasting). */
|
|
if(rmp->mp_endpoint == PM_PROC_NR) {
|
|
return;
|
|
}
|
|
|
|
/* System signals have always to go through the kernel first to let it
|
|
* pick the right signal manager. If PM is the assigned signal manager,
|
|
* the signal will come back and will actually be processed.
|
|
*/
|
|
if(!ksig) {
|
|
sys_kill(rmp->mp_endpoint, signo);
|
|
return;
|
|
}
|
|
|
|
/* Print stacktrace if necessary. */
|
|
if(SIGS_IS_STACKTRACE(signo)) {
|
|
sys_diagctl_stacktrace(rmp->mp_endpoint);
|
|
}
|
|
|
|
if(!SIGS_IS_TERMINATION(signo)) {
|
|
/* Translate every non-termination sys signal into a message. */
|
|
message m;
|
|
m.m_type = SIGS_SIGNAL_RECEIVED;
|
|
m.m_pm_lsys_sigs_signal.num = signo;
|
|
asynsend3(rmp->mp_endpoint, &m, AMF_NOREPLY);
|
|
}
|
|
else {
|
|
/* Exit the process in case of termination system signal. */
|
|
sig_proc_exit(rmp, signo);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle user processes now. See if the signal cannot be safely ignored. */
|
|
badignore = ksig && sigismember(&noign_sset, signo) && (
|
|
sigismember(&rmp->mp_ignore, signo) ||
|
|
sigismember(&rmp->mp_sigmask, signo));
|
|
|
|
if (!badignore && sigismember(&rmp->mp_ignore, signo)) {
|
|
/* Signal should be ignored. */
|
|
return;
|
|
}
|
|
if (!badignore && sigismember(&rmp->mp_sigmask, signo)) {
|
|
/* Signal should be blocked. */
|
|
sigaddset(&rmp->mp_sigpending, signo);
|
|
if(ksig)
|
|
sigaddset(&rmp->mp_ksigpending, signo);
|
|
return;
|
|
}
|
|
|
|
if ((rmp->mp_flags & TRACE_STOPPED) && signo != SIGKILL) {
|
|
/* If the process is stopped for a debugger, do not deliver any signals
|
|
* (except SIGKILL) in order not to confuse the debugger. The signals
|
|
* will be delivered using the check_pending() calls in do_trace().
|
|
*/
|
|
sigaddset(&rmp->mp_sigpending, signo);
|
|
if(ksig)
|
|
sigaddset(&rmp->mp_ksigpending, signo);
|
|
return;
|
|
}
|
|
if (!badignore && sigismember(&rmp->mp_catch, signo)) {
|
|
/* Signal is caught. First interrupt the process's current call, if
|
|
* applicable. This may involve a roundtrip to VFS, in which case we'll
|
|
* have to check back later.
|
|
*/
|
|
if (!unpause(rmp)) {
|
|
/* not yet unpaused; continue later */
|
|
sigaddset(&rmp->mp_sigpending, signo);
|
|
if(ksig)
|
|
sigaddset(&rmp->mp_ksigpending, signo);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Then send the actual signal to the process, by setting up a signal
|
|
* handler.
|
|
*/
|
|
if (sig_send(rmp, signo))
|
|
return;
|
|
|
|
/* We were unable to spawn a signal handler. Kill the process. */
|
|
printf("PM: %d can't catch signal %d - killing\n",
|
|
rmp->mp_pid, signo);
|
|
}
|
|
else if (!badignore && sigismember(&ign_sset, signo)) {
|
|
/* Signal defaults to being ignored. */
|
|
return;
|
|
}
|
|
|
|
/* Terminate process */
|
|
sig_proc_exit(rmp, signo);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sig_proc_exit *
|
|
*===========================================================================*/
|
|
static void sig_proc_exit(rmp, signo)
|
|
struct mproc *rmp; /* process that must exit */
|
|
int signo; /* signal that caused termination */
|
|
{
|
|
rmp->mp_sigstatus = (char) signo;
|
|
if (sigismember(&core_sset, signo)) {
|
|
if(!(rmp->mp_flags & PRIV_PROC)) {
|
|
printf("PM: coredump signal %d for %d / %s\n", signo,
|
|
rmp->mp_pid, rmp->mp_name);
|
|
sys_diagctl_stacktrace(rmp->mp_endpoint);
|
|
}
|
|
exit_proc(rmp, 0, TRUE /*dump_core*/);
|
|
}
|
|
else {
|
|
exit_proc(rmp, 0, FALSE /*dump_core*/);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* check_sig *
|
|
*===========================================================================*/
|
|
int check_sig(proc_id, signo, ksig)
|
|
pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */
|
|
int signo; /* signal to send to process (0 to _NSIG-1) */
|
|
int ksig; /* non-zero means signal comes from kernel */
|
|
{
|
|
/* Check to see if it is possible to send a signal. The signal may have to be
|
|
* sent to a group of processes. This routine is invoked by the KILL system
|
|
* call, and also when the kernel catches a DEL or other signal.
|
|
*/
|
|
|
|
register struct mproc *rmp;
|
|
int count; /* count # of signals sent */
|
|
int error_code;
|
|
|
|
if (signo < 0 || signo >= _NSIG) return(EINVAL);
|
|
|
|
/* Return EINVAL for attempts to send SIGKILL to INIT alone. */
|
|
if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL);
|
|
|
|
/* Signal RS first when broadcasting SIGTERM. */
|
|
if (proc_id == -1 && signo == SIGTERM)
|
|
sys_kill(RS_PROC_NR, signo);
|
|
|
|
/* Search the proc table for processes to signal. Start from the end of the
|
|
* table to analyze core system processes at the end when broadcasting.
|
|
* (See forkexit.c about pid magic.)
|
|
*/
|
|
count = 0;
|
|
error_code = ESRCH;
|
|
for (rmp = &mproc[NR_PROCS-1]; rmp >= &mproc[0]; rmp--) {
|
|
if (!(rmp->mp_flags & IN_USE)) continue;
|
|
|
|
/* Check for selection. */
|
|
if (proc_id > 0 && proc_id != rmp->mp_pid) continue;
|
|
if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue;
|
|
if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue;
|
|
if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue;
|
|
|
|
/* Do not kill servers and drivers when broadcasting SIGKILL. */
|
|
if (proc_id == -1 && signo == SIGKILL &&
|
|
(rmp->mp_flags & PRIV_PROC)) continue;
|
|
|
|
/* Skip VM entirely as it might lead to a deadlock with its signal
|
|
* manager if the manager page faults at the same time.
|
|
*/
|
|
if (rmp->mp_endpoint == VM_PROC_NR) continue;
|
|
|
|
/* Disallow lethal signals sent by user processes to sys processes. */
|
|
if (!ksig && SIGS_IS_LETHAL(signo) && (rmp->mp_flags & PRIV_PROC)) {
|
|
error_code = EPERM;
|
|
continue;
|
|
}
|
|
|
|
/* Check for permission. */
|
|
if (mp->mp_effuid != SUPER_USER
|
|
&& mp->mp_realuid != rmp->mp_realuid
|
|
&& mp->mp_effuid != rmp->mp_realuid
|
|
&& mp->mp_realuid != rmp->mp_effuid
|
|
&& mp->mp_effuid != rmp->mp_effuid) {
|
|
error_code = EPERM;
|
|
continue;
|
|
}
|
|
|
|
count++;
|
|
if (signo == 0 || (rmp->mp_flags & EXITING)) continue;
|
|
|
|
/* 'sig_proc' will handle the disposition of the signal. The
|
|
* signal may be caught, blocked, ignored, or cause process
|
|
* termination, possibly with core dump.
|
|
*/
|
|
sig_proc(rmp, signo, TRUE /*trace*/, ksig);
|
|
|
|
if (proc_id > 0) break; /* only one process being signaled */
|
|
}
|
|
|
|
/* If the calling process has killed itself, don't reply. */
|
|
if ((mp->mp_flags & (IN_USE | EXITING)) != IN_USE) return(SUSPEND);
|
|
return(count > 0 ? OK : error_code);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* check_pending *
|
|
*===========================================================================*/
|
|
void check_pending(rmp)
|
|
register struct mproc *rmp;
|
|
{
|
|
/* Check to see if any pending signals have been unblocked. Deliver as many
|
|
* of them as we can, until we have to wait for a reply from VFS first.
|
|
*
|
|
* There are several places in this file where the signal mask is
|
|
* changed. At each such place, check_pending() should be called to
|
|
* check for newly unblocked signals.
|
|
*/
|
|
int i;
|
|
int ksig;
|
|
|
|
for (i = 1; i < _NSIG; i++) {
|
|
if (sigismember(&rmp->mp_sigpending, i) &&
|
|
!sigismember(&rmp->mp_sigmask, i)) {
|
|
ksig = sigismember(&rmp->mp_ksigpending, i);
|
|
sigdelset(&rmp->mp_sigpending, i);
|
|
sigdelset(&rmp->mp_ksigpending, i);
|
|
sig_proc(rmp, i, FALSE /*trace*/, ksig);
|
|
|
|
if (rmp->mp_flags & VFS_CALL) {
|
|
/* Signals must be rechecked upon return from the new
|
|
* VFS call, unless the process was killed. In both
|
|
* cases, the process is stopped.
|
|
*/
|
|
assert(rmp->mp_flags & PROC_STOPPED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* restart_sigs *
|
|
*===========================================================================*/
|
|
void restart_sigs(rmp)
|
|
struct mproc *rmp;
|
|
{
|
|
/* VFS has replied to a request from us; do signal-related work.
|
|
*/
|
|
|
|
if (rmp->mp_flags & (VFS_CALL | EXITING)) return;
|
|
|
|
if (rmp->mp_flags & TRACE_EXIT) {
|
|
/* Tracer requested exit with specific exit value */
|
|
exit_proc(rmp, rmp->mp_exitstatus, FALSE /*dump_core*/);
|
|
}
|
|
else if (rmp->mp_flags & PROC_STOPPED) {
|
|
/* If a signal arrives while we are performing a VFS call, the process
|
|
* will always be stopped immediately. Thus, if the process is stopped
|
|
* once the reply from VFS arrives, we might have to check signals.
|
|
*/
|
|
assert(!(rmp->mp_flags & DELAY_CALL));
|
|
|
|
/* We saved signal(s) for after finishing a VFS call. Deal with this.
|
|
* PROC_STOPPED remains set to indicate the process is still stopped.
|
|
*/
|
|
check_pending(rmp);
|
|
|
|
/* Resume the process now, unless there is a reason not to. */
|
|
try_resume_proc(rmp);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* unpause *
|
|
*===========================================================================*/
|
|
static int unpause(rmp)
|
|
struct mproc *rmp; /* which process */
|
|
{
|
|
/* A signal is to be sent to a process. If that process is hanging on a
|
|
* system call, the system call must be terminated with EINTR. First check if
|
|
* the process is hanging on an PM call. If not, tell VFS, so it can check for
|
|
* interruptible calls such as READs and WRITEs from pipes, ttys and the like.
|
|
*/
|
|
message m;
|
|
|
|
assert(!(rmp->mp_flags & VFS_CALL));
|
|
|
|
/* If the UNPAUSED flag is set, VFS replied to an earlier unpause request. */
|
|
if (rmp->mp_flags & UNPAUSED) {
|
|
assert((rmp->mp_flags & (DELAY_CALL | PROC_STOPPED)) == PROC_STOPPED);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* If the process is already stopping, don't do anything now. */
|
|
if (rmp->mp_flags & DELAY_CALL)
|
|
return FALSE;
|
|
|
|
/* Check to see if process is hanging on a WAIT or SIGSUSPEND call. */
|
|
if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
|
|
/* Stop the process from running. Do not interrupt the actual call yet.
|
|
* sig_send() will interrupt the call and resume the process afterward.
|
|
* No delay calls: we know for a fact that the process called us.
|
|
*/
|
|
stop_proc(rmp, FALSE /*may_delay*/);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Not paused in PM. Let VFS try to unpause the process. The process needs to
|
|
* be stopped for this. If it is not already stopped, try to stop it now. If
|
|
* that does not succeed immediately, postpone signal delivery.
|
|
*/
|
|
if (!(rmp->mp_flags & PROC_STOPPED) && !stop_proc(rmp, TRUE /*may_delay*/))
|
|
return FALSE;
|
|
|
|
memset(&m, 0, sizeof(m));
|
|
m.m_type = VFS_PM_UNPAUSE;
|
|
m.VFS_PM_ENDPT = rmp->mp_endpoint;
|
|
|
|
tell_vfs(rmp, &m);
|
|
|
|
/* Also tell VM. */
|
|
vm_notify_sig_wrapper(rmp->mp_endpoint);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sig_send *
|
|
*===========================================================================*/
|
|
static int sig_send(rmp, signo)
|
|
struct mproc *rmp; /* what process to spawn a signal handler in */
|
|
int signo; /* signal to send to process (1 to _NSIG-1) */
|
|
{
|
|
/* The process is supposed to catch this signal. Spawn a signal handler.
|
|
* Return TRUE if this succeeded, FALSE otherwise.
|
|
*/
|
|
struct sigmsg sigmsg;
|
|
int i, r, sigflags, slot;
|
|
|
|
assert(rmp->mp_flags & PROC_STOPPED);
|
|
|
|
sigflags = rmp->mp_sigact[signo].sa_flags;
|
|
slot = (int) (rmp - mproc);
|
|
|
|
if (rmp->mp_flags & SIGSUSPENDED)
|
|
sigmsg.sm_mask = rmp->mp_sigmask2;
|
|
else
|
|
sigmsg.sm_mask = rmp->mp_sigmask;
|
|
sigmsg.sm_signo = signo;
|
|
sigmsg.sm_sighandler =
|
|
(vir_bytes) rmp->mp_sigact[signo].sa_handler;
|
|
sigmsg.sm_sigreturn = rmp->mp_sigreturn;
|
|
for (i = 1; i < _NSIG; i++) {
|
|
if (sigismember(&rmp->mp_sigact[signo].sa_mask, i))
|
|
sigaddset(&rmp->mp_sigmask, i);
|
|
}
|
|
|
|
if (sigflags & SA_NODEFER)
|
|
sigdelset(&rmp->mp_sigmask, signo);
|
|
else
|
|
sigaddset(&rmp->mp_sigmask, signo);
|
|
|
|
if (sigflags & SA_RESETHAND) {
|
|
sigdelset(&rmp->mp_catch, signo);
|
|
rmp->mp_sigact[signo].sa_handler = SIG_DFL;
|
|
}
|
|
sigdelset(&rmp->mp_sigpending, signo);
|
|
sigdelset(&rmp->mp_ksigpending, signo);
|
|
|
|
/* Ask the kernel to deliver the signal */
|
|
r = sys_sigsend(rmp->mp_endpoint, &sigmsg);
|
|
/* sys_sigsend can fail legitimately with EFAULT or ENOMEM if the process
|
|
* memory can't accommodate the signal handler. The target process will be
|
|
* killed in that case, so do not bother interrupting or resuming it.
|
|
*/
|
|
if(r == EFAULT || r == ENOMEM) {
|
|
return(FALSE);
|
|
}
|
|
/* Other errors are unexpected pm/kernel discrepancies. */
|
|
if (r != OK) {
|
|
panic("sys_sigsend failed: %d", r);
|
|
}
|
|
|
|
/* Was the process suspended in PM? Then interrupt the blocking call. */
|
|
if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
|
|
rmp->mp_flags &= ~(WAITING | SIGSUSPENDED);
|
|
|
|
reply(slot, EINTR);
|
|
|
|
/* The process must just have been stopped by unpause(), which means
|
|
* that the UNPAUSE flag is not set.
|
|
*/
|
|
assert(!(rmp->mp_flags & UNPAUSED));
|
|
|
|
try_resume_proc(rmp);
|
|
|
|
assert(!(rmp->mp_flags & PROC_STOPPED));
|
|
} else {
|
|
/* If the process was not suspended in PM, VFS must first have
|
|
* confirmed that it has tried to unsuspend any blocking call. Thus, we
|
|
* got here from restart_sigs() as part of handling PM_UNPAUSE_REPLY,
|
|
* and restart_sigs() will resume the process later.
|
|
*/
|
|
assert(rmp->mp_flags & UNPAUSED);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_notify_sig_wrapper *
|
|
*===========================================================================*/
|
|
void vm_notify_sig_wrapper(endpoint_t ep)
|
|
{
|
|
/* get IPC's endpoint,
|
|
* the reason that we directly get the endpoint
|
|
* instead of from DS server is that otherwise
|
|
* it will cause deadlock between PM, VM and DS.
|
|
*/
|
|
struct mproc *rmp;
|
|
endpoint_t ipc_ep = 0;
|
|
|
|
for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
|
|
if (!(rmp->mp_flags & IN_USE))
|
|
continue;
|
|
if (!strcmp(rmp->mp_name, "ipc")) {
|
|
ipc_ep = rmp->mp_endpoint;
|
|
vm_notify_sig(ep, ipc_ep);
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|