You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

519 lines
11 KiB

/* Tests for PM signal handling robustness - by D.C. van Moolenbroek */
/*
* The signal handling code must not rely on priorities assigned to services,
* and so, this test (like any test!) must also pass if PM and/or VFS are not
* given a fixed high priority. A good way to verify this is to let PM and VFS
* be scheduled by SCHED rather than KERNEL, and to give them the same priority
* as (or slightly lower than) normal user processes. Note that if VFS is
* configured to use a priority *far lower* than user processes, starvation may
* cause this test not to complete in some scenarios. In that case, Ctrl+C
* should still be able to kill the test.
*/
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/utsname.h>
#define ITERATIONS 1
#include "common.h"
#define NR_SIGNALS 20000
#define MAX_SIGNALERS 3
static const int signaler_sig[MAX_SIGNALERS] = { SIGUSR1, SIGUSR2, SIGHUP };
static pid_t signaler_pid[MAX_SIGNALERS];
static int sig_counter;
enum {
JOB_RUN = 0,
JOB_CALL_PM,
JOB_CALL_VFS,
JOB_SET_MASK,
JOB_BLOCK_PM,
JOB_BLOCK_VFS,
JOB_CALL_PM_VFS,
JOB_FORK,
NR_JOBS
};
#define OPT_NEST 0x1
#define OPT_ALARM 0x2
#define OPT_ALL 0x3
struct link {
pid_t pid;
int sndfd;
int rcvfd;
};
/*
* Spawn a child process, with a pair of pipes to talk to it bidirectionally.
*/
static void
spawn(struct link *link, void (*proc)(struct link *))
{
int up[2], dn[2];
fflush(stdout);
fflush(stderr);
if (pipe(up) != 0) e(0);
if (pipe(dn) != 0) e(0);
link->pid = fork();
switch (link->pid) {
case 0:
close(up[1]);
close(dn[0]);
link->rcvfd = up[0];
link->sndfd = dn[1];
errct = 0;
proc(link);
/* Close our pipe FDs on exit, so that we can make zombies. */
exit(errct);
case -1:
e(0);
break;
}
close(up[0]);
close(dn[1]);
link->sndfd = up[1];
link->rcvfd = dn[0];
}
/*
* Wait for a child process to terminate, and clean up.
*/
static void
collect(struct link *link)
{
int status;
close(link->sndfd);
close(link->rcvfd);
if (waitpid(link->pid, &status, 0) <= 0) e(0);
if (!WIFEXITED(status)) e(0);
else errct += WEXITSTATUS(status);
}
/*
* Forcibly terminate a child process, and clean up.
*/
static void
terminate(struct link *link)
{
int status;
if (kill(link->pid, SIGKILL) != 0) e(0);
close(link->sndfd);
close(link->rcvfd);
if (waitpid(link->pid, &status, 0) <= 0) e(0);
if (WIFSIGNALED(status)) {
if (WTERMSIG(status) != SIGKILL) e(0);
} else {
if (!WIFEXITED(status)) e(0);
else errct += WEXITSTATUS(status);
}
}
/*
* Send an integer value to the child or parent.
*/
static void
snd(struct link *link, int val)
{
if (write(link->sndfd, (void *) &val, sizeof(val)) != sizeof(val))
e(0);
}
/*
* Receive an integer value from the child or parent, or -1 on EOF.
*/
static int
rcv(struct link *link)
{
int r, val;
if ((r = read(link->rcvfd, (void *) &val, sizeof(val))) == 0)
return -1;
if (r != sizeof(val)) e(0);
return val;
}
/*
* Set a signal handler for a particular signal, blocking either all or no
* signals when the signal handler is invoked.
*/
static void
set_handler(int sig, void (*proc)(int), int block)
{
struct sigaction act;
memset(&act, 0, sizeof(act));
if (block) sigfillset(&act.sa_mask);
act.sa_handler = proc;
if (sigaction(sig, &act, NULL) != 0) e(0);
}
/*
* Generic signal handler for the worker process.
*/
static void
worker_handler(int sig)
{
int i;
switch (sig) {
case SIGUSR1:
case SIGUSR2:
case SIGHUP:
for (i = 0; i < MAX_SIGNALERS; i++) {
if (signaler_sig[i] != sig) continue;
if (signaler_pid[i] == -1) e(0);
else if (kill(signaler_pid[i], SIGUSR1) != 0) e(0);
break;
}
if (i == MAX_SIGNALERS) e(0);
break;
case SIGTERM:
exit(errct);
break;
case SIGALRM:
/* Do nothing. */
break;
default:
e(0);
}
}
/*
* Procedure for the worker process. Sets up its own environment using
* information sent to it by the parent, sends an acknowledgement to the
* parent, and loops executing the job given to it until a SIGTERM comes in.
*/
static void __dead
worker_proc(struct link *parent)
{
struct utsname name;
struct itimerval it;
struct timeval tv;
sigset_t set, oset;
uid_t uid;
int i, job, options;
job = rcv(parent);
options = rcv(parent);
for (i = 0; i < MAX_SIGNALERS; i++) {
set_handler(signaler_sig[i], worker_handler,
!(options & OPT_NEST));
signaler_pid[i] = rcv(parent);
}
set_handler(SIGTERM, worker_handler, 1 /* block */);
set_handler(SIGALRM, worker_handler, !(options & OPT_NEST));
snd(parent, 0);
if (options & OPT_ALARM) {
/* The timer would kill wimpy platforms such as ARM. */
if (uname(&name) < 0) e(0);
if (strcmp(name.machine, "arm")) {
it.it_value.tv_sec = 0;
it.it_value.tv_usec = 1;
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1;
if (setitimer(ITIMER_REAL, &it, NULL) != 0) e(0);
}
}
switch (job) {
case JOB_RUN:
for (;;);
break;
case JOB_CALL_PM:
/*
* Part of the complication of the current system in PM comes
* from the fact that when a process is being stopped, it might
* already have started sending a message. That message will
* arrive at its destination regardless of the process's run
* state. PM must avoid setting up a signal handler (and
* changing the process's signal mask as part of that) if such
* a message is still in transit, because that message might,
* for example, query (or even change) the signal mask.
*/
for (;;) {
if (sigprocmask(SIG_BLOCK, NULL, &set) != 0) e(0);
if (sigismember(&set, SIGUSR1)) e(0);
}
break;
case JOB_CALL_VFS:
for (;;) {
tv.tv_sec = 0;
tv.tv_usec = 0;
select(0, NULL, NULL, NULL, &tv);
}
break;
case JOB_SET_MASK:
for (;;) {
sigfillset(&set);
if (sigprocmask(SIG_SETMASK, &set, &oset) != 0) e(0);
if (sigprocmask(SIG_SETMASK, &oset, NULL) != 0) e(0);
}
break;
case JOB_BLOCK_PM:
for (;;) {
sigemptyset(&set);
sigsuspend(&set);
}
break;
case JOB_BLOCK_VFS:
for (;;)
select(0, NULL, NULL, NULL, NULL);
break;
case JOB_CALL_PM_VFS:
uid = getuid();
for (;;)
setuid(uid);
break;
case JOB_FORK:
/*
* The child exits immediately; the parent kills the child
* immediately. The outcome mostly depends on scheduling.
* Varying process priorities may yield different tests.
*/
for (;;) {
pid_t pid = fork();
switch (pid) {
case 0:
exit(0);
case -1:
e(1);
break;
default:
kill(pid, SIGKILL);
if (wait(NULL) != pid) e(0);
}
}
break;
default:
e(0);
exit(1);
}
}
/*
* Signal handler procedure for the signaler processes, counting the number of
* signals received from the worker process.
*/
static void
signaler_handler(int sig)
{
sig_counter++;
}
/*
* Procedure for the signaler processes. Gets the pid of the worker process
* and the signal to use, and then repeatedly sends that signal to the worker
* process, waiting for a SIGUSR1 signal back from the worker before
* continuing. This signal ping-pong is repeated for a set number of times.
*/
static void
signaler_proc(struct link *parent)
{
sigset_t set, oset;
pid_t pid;
int i, sig, nr;
pid = rcv(parent);
sig = rcv(parent);
nr = rcv(parent);
sig_counter = 0;
sigfillset(&set);
if (sigprocmask(SIG_SETMASK, &set, &oset) != 0) e(0);
set_handler(SIGUSR1, signaler_handler, 1 /*block*/);
for (i = 0; nr == 0 || i < nr; i++) {
if (sig_counter != i) e(0);
if (kill(pid, sig) != 0 && nr > 0) e(0);
sigsuspend(&oset);
}
if (sig_counter != nr) e(0);
}
/*
* Set up the worker and signaler processes, wait for the signaler processes to
* do their work and terminate, and then terminate the worker process.
*/
static void
sub79a(int job, int signalers, int options)
{
struct link worker, signaler[MAX_SIGNALERS];
int i;
spawn(&worker, worker_proc);
snd(&worker, job);
snd(&worker, options);
for (i = 0; i < signalers; i++) {
spawn(&signaler[i], signaler_proc);
snd(&worker, signaler[i].pid);
}
for (; i < MAX_SIGNALERS; i++)
snd(&worker, -1);
if (rcv(&worker) != 0) e(0);
for (i = 0; i < signalers; i++) {
snd(&signaler[i], worker.pid);
snd(&signaler[i], signaler_sig[i]);
snd(&signaler[i], NR_SIGNALS);
}
for (i = 0; i < signalers; i++)
collect(&signaler[i]);
if (kill(worker.pid, SIGTERM) != 0) e(0);
collect(&worker);
}
/*
* Stress test for signal handling. One worker process gets signals from up to
* three signaler processes while performing one of a number of jobs. It
* replies to each signal by signaling the source, thus creating a ping-pong
* effect for each of the signaler processes. The signal ping-ponging is
* supposed to be reliable, and the most important aspect of the test is that
* no signals get lost. The test is performed a number of times, varying the
* job executed by the worker process, the number of signalers, whether signals
* are blocked while executing a signal handler in the worker, and whether the
* worker process has a timer running at high frequency.
*/
static void
test79a(void)
{
int job, signalers, options;
subtest = 1;
for (options = 0; options <= OPT_ALL; options++)
for (signalers = 1; signalers <= MAX_SIGNALERS; signalers++)
for (job = 0; job < NR_JOBS; job++)
sub79a(job, signalers, options);
}
/*
* Set up the worker process and optionally a signaler process, wait for a
* predetermined amount of time, and then kill all the child processes.
*/
static void
sub79b(int job, int use_signaler, int options)
{
struct link worker, signaler;
struct timeval tv;
int i;
spawn(&worker, worker_proc);
snd(&worker, job);
snd(&worker, options);
if ((i = use_signaler) != 0) {
spawn(&signaler, signaler_proc);
snd(&worker, signaler.pid);
}
for (; i < MAX_SIGNALERS; i++)
snd(&worker, -1);
if (rcv(&worker) != 0) e(0);
if (use_signaler) {
snd(&signaler, worker.pid);
snd(&signaler, signaler_sig[0]);
snd(&signaler, 0);
}
/* Use select() so that we can verify we don't get signals. */
tv.tv_sec = 0;
tv.tv_usec = 100000;
if (select(0, NULL, NULL, NULL, &tv) != 0) e(0);
terminate(&worker);
if (use_signaler)
terminate(&signaler);
}
/*
* This test is similar to the previous one, except that we now kill the worker
* process after a while. This should trigger various process transitions to
* the exiting state. Not much can be verified from this test program, but we
* intend to trigger as many internal state verification statements of PM
* itself as possible this way. A signaler process is optional in this test,
* and if used, it will not stop after a predetermined number of signals.
*/
static void
test79b(void)
{
int job, signalers, options;
subtest = 2;
for (options = 0; options <= OPT_ALL; options++)
for (signalers = 0; signalers <= 1; signalers++)
for (job = 0; job < NR_JOBS; job++)
sub79b(job, signalers, options);
}
/*
* PM signal handling robustness test program.
*/
int
main(int argc, char **argv)
{
int i, m;
start(79);
if (argc == 2)
m = atoi(argv[1]);
else
m = 0xFF;
for (i = 0; i < ITERATIONS; i++) {
if (m & 0x01) test79a();
if (m & 0x02) test79b();
}
quit();
}