You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

297 lines
9.5 KiB

/* This file contains the clock task, which handles time related functions.
* Important events that are handled by the CLOCK include setting and
* monitoring alarm timers and deciding when to (re)schedule processes.
* The CLOCK offers a direct interface to kernel processes. System services
* can access its services through system calls, such as sys_setalarm(). The
* CLOCK task thus is hidden from the outside world.
*
* Changes:
* Aug 18, 2006 removed direct hardware access etc, MinixPPC (Ingmar Alting)
* Oct 08, 2005 reordering and comment editing (A. S. Woodhull)
* Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
* Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
* Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder)
*
* Clock task is notified by the clock's interrupt handler when a timer
* has expired.
*
* In addition to the main clock_task() entry point, which starts the main
* loop, there are several other minor entry points:
* clock_stop: called just before MINIX shutdown
* get_realtime: get wall time since boot in clock ticks
* set_realtime: set wall time since boot in clock ticks
* set_adjtime_delta: set the number of ticks to adjust realtime
* get_monotonic: get monotonic time since boot in clock ticks
* set_kernel_timer: set a watchdog timer (+)
* reset_kernel_timer: reset a watchdog timer (+)
* read_clock: read the counter of channel 0 of the 8253A timer
*
* (+) The CLOCK task keeps tracks of watchdog timers for the entire kernel.
* It is crucial that watchdog functions not block, or the CLOCK task may
* be blocked. Do not send() a message when the receiver is not expecting it.
* Instead, notify(), which always returns, should be used.
*/
#include "kernel/kernel.h"
#include <minix/endpoint.h>
#include <assert.h>
#include "clock.h"
#ifdef USE_WATCHDOG
#include "watchdog.h"
#endif
/* Function prototype for PRIVATE functions.
*/
static void load_update(void);
/* The CLOCK's timers queue. The functions in <minix/timers.h> operate on this.
* Each system process possesses a single synchronous alarm timer. If other
* kernel parts want to use additional timers, they must declare their own
* persistent (static) timer structure, which can be passed to the clock
* via (re)set_kernel_timer().
* When a timer expires its watchdog function is run by the CLOCK task.
*/
static minix_timer_t *clock_timers; /* queue of CLOCK timers */
static clock_t next_timeout; /* monotonic time that next timer expires */
/* The time is incremented by the interrupt handler on each clock tick.
*/
static clock_t monotonic = 0;
/* Reflects the wall time and may be slowed/sped up by using adjclock()
*/
static clock_t realtime = 0;
/* Number of ticks to adjust realtime by. A negative value implies slowing
* down realtime, a positive value implies speeding it up.
*/
static int32_t adjtime_delta = 0;
/*
* The boot processor's timer interrupt handler. In addition to non-boot cpus
* it keeps real time and notifies the clock task if need be.
*/
int timer_int_handler(void)
{
/* Update user and system accounting times. Charge the current process
* for user time. If the current process is not billable, that is, if a
* non-user process is running, charge the billable process for system
* time as well. Thus the unbillable process' user time is the billable
* user's system time.
*/
struct proc * p, * billp;
/* FIXME watchdog for slave cpus! */
#ifdef USE_WATCHDOG
/*
* we need to know whether local timer ticks are happening or whether
* the kernel is locked up. We don't care about overflows as we only
* need to know that it's still ticking or not
*/
watchdog_local_timer_ticks++;
#endif
if (cpu_is_bsp(cpuid)) {
monotonic++;
/* if adjtime_delta has ticks remaining, apply one to realtime.
* limit changes to every other interrupt.
*/
if (adjtime_delta != 0 && monotonic & 0x1) {
/* go forward or stay behind */
realtime += (adjtime_delta > 0) ? 2 : 0;
adjtime_delta += (adjtime_delta > 0) ? -1 : +1;
} else {
realtime++;
}
}
/* Update user and system accounting times. Charge the current process
* for user time. If the current process is not billable, that is, if a
* non-user process is running, charge the billable process for system
* time as well. Thus the unbillable process' user time is the billable
* user's system time.
*/
p = get_cpulocal_var(proc_ptr);
billp = get_cpulocal_var(bill_ptr);
p->p_user_time++;
if (! (priv(p)->s_flags & BILLABLE)) {
billp->p_sys_time++;
}
/* Decrement virtual timers, if applicable. We decrement both the
* virtual and the profile timer of the current process, and if the
* current process is not billable, the timer of the billed process as
* well. If any of the timers expire, do_clocktick() will send out
* signals.
*/
if ((p->p_misc_flags & MF_VIRT_TIMER) && (p->p_virt_left > 0)) {
p->p_virt_left--;
}
if ((p->p_misc_flags & MF_PROF_TIMER) && (p->p_prof_left > 0)) {
p->p_prof_left--;
}
if (! (priv(p)->s_flags & BILLABLE) &&
(billp->p_misc_flags & MF_PROF_TIMER) &&
(billp->p_prof_left > 0)) {
billp->p_prof_left--;
}
/*
* Check if a process-virtual timer expired. Check current process, but
* also bill_ptr - one process's user time is another's system time, and
* the profile timer decreases for both!
*/
vtimer_check(p);
if (p != billp)
vtimer_check(billp);
/* Update load average. */
load_update();
if (cpu_is_bsp(cpuid)) {
/* if a timer expired, notify the clock task */
if ((next_timeout <= monotonic)) {
tmrs_exptimers(&clock_timers, monotonic, NULL);
next_timeout = (clock_timers == NULL) ?
TMR_NEVER : clock_timers->tmr_exp_time;
}
#ifdef DEBUG_SERIAL
if (kinfo.do_serial_debug)
do_ser_debug();
#endif
}
arch_timer_int_handler();
return(1); /* reenable interrupts */
}
/*===========================================================================*
* get_realtime *
*===========================================================================*/
clock_t get_realtime(void)
{
/* Get and return the current wall time in ticks since boot. */
return(realtime);
}
/*===========================================================================*
* set_realtime *
*===========================================================================*/
void set_realtime(clock_t newrealtime)
{
realtime = newrealtime;
}
/*===========================================================================*
* set_adjtime_delta *
*===========================================================================*/
void set_adjtime_delta(int32_t ticks)
{
adjtime_delta = ticks;
}
/*===========================================================================*
* get_monotonic *
*===========================================================================*/
clock_t get_monotonic(void)
{
/* Get and return the number of ticks since boot. */
return(monotonic);
}
/*===========================================================================*
* set_kernel_timer *
*===========================================================================*/
void set_kernel_timer(tp, exp_time, watchdog)
minix_timer_t *tp; /* pointer to timer structure */
clock_t exp_time; /* expiration monotonic time */
tmr_func_t watchdog; /* watchdog to be called */
{
/* Insert the new timer in the active timers list. Always update the
* next timeout time by setting it to the front of the active list.
*/
tmrs_settimer(&clock_timers, tp, exp_time, watchdog, NULL);
next_timeout = clock_timers->tmr_exp_time;
}
/*===========================================================================*
* reset_kernel_timer *
*===========================================================================*/
void reset_kernel_timer(tp)
minix_timer_t *tp; /* pointer to timer structure */
{
/* The timer pointed to by 'tp' is no longer needed. Remove it from both the
* active and expired lists. Always update the next timeout time by setting
* it to the front of the active list.
*/
tmrs_clrtimer(&clock_timers, tp, NULL);
next_timeout = (clock_timers == NULL) ?
TMR_NEVER : clock_timers->tmr_exp_time;
}
/*===========================================================================*
* load_update *
*===========================================================================*/
static void load_update(void)
{
u16_t slot;
int enqueued = 0, q;
struct proc *p;
struct proc **rdy_head;
/* Load average data is stored as a list of numbers in a circular
* buffer. Each slot accumulates _LOAD_UNIT_SECS of samples of
* the number of runnable processes. Computations can then
* be made of the load average over variable periods, in the
* user library (see getloadavg(3)).
*/
slot = (monotonic / system_hz / _LOAD_UNIT_SECS) % _LOAD_HISTORY;
if(slot != kloadinfo.proc_last_slot) {
kloadinfo.proc_load_history[slot] = 0;
kloadinfo.proc_last_slot = slot;
}
rdy_head = get_cpulocal_var(run_q_head);
/* Cumulation. How many processes are ready now? */
for(q = 0; q < NR_SCHED_QUEUES; q++) {
for(p = rdy_head[q]; p != NULL; p = p->p_nextready) {
enqueued++;
}
}
kloadinfo.proc_load_history[slot] += enqueued;
/* Up-to-dateness. */
kloadinfo.last_clock = monotonic;
}
int boot_cpu_init_timer(unsigned freq)
{
if (init_local_timer(freq))
return -1;
if (register_local_timer_handler(
(irq_handler_t) timer_int_handler))
return -1;
return 0;
}
int app_cpu_init_timer(unsigned freq)
{
if (init_local_timer(freq))
return -1;
return 0;
}