679 lines
15 KiB
C
679 lines
15 KiB
C
/* system dependent functions for use inside the whole kernel. */
|
|
|
|
#include "kernel/kernel.h"
|
|
|
|
#include <unistd.h>
|
|
#include <ctype.h>
|
|
#include <string.h>
|
|
#include <machine/cmos.h>
|
|
#include <machine/bios.h>
|
|
#include <machine/cpu.h>
|
|
#include <minix/portio.h>
|
|
#include <minix/cpufeature.h>
|
|
#include <assert.h>
|
|
#include <signal.h>
|
|
#include <machine/vm.h>
|
|
|
|
#include <minix/u64.h>
|
|
|
|
#include "archconst.h"
|
|
#include "arch_proto.h"
|
|
#include "serial.h"
|
|
#include "oxpcie.h"
|
|
#include <machine/multiboot.h>
|
|
|
|
#include "glo.h"
|
|
|
|
#ifdef USE_APIC
|
|
#include "apic.h"
|
|
#endif
|
|
|
|
#ifdef USE_ACPI
|
|
#include "acpi.h"
|
|
#endif
|
|
|
|
static int osfxsr_feature; /* FXSAVE/FXRSTOR instructions support (SSEx) */
|
|
|
|
/* set MP and NE flags to handle FPU exceptions in native mode. */
|
|
#define CR0_MP_NE 0x0022
|
|
/* set CR4.OSFXSR[bit 9] if FXSR is supported. */
|
|
#define CR4_OSFXSR (1L<<9)
|
|
/* set OSXMMEXCPT[bit 10] if we provide #XM handler. */
|
|
#define CR4_OSXMMEXCPT (1L<<10)
|
|
|
|
void * k_stacks;
|
|
|
|
static void ser_debug(int c);
|
|
static void ser_dump_vfs(void);
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void ser_dump_proc_cpu(void);
|
|
#endif
|
|
#if !CONFIG_OXPCIE
|
|
static void ser_init(void);
|
|
#endif
|
|
|
|
void fpu_init(void)
|
|
{
|
|
unsigned short cw, sw;
|
|
|
|
fninit();
|
|
sw = fnstsw();
|
|
fnstcw(&cw);
|
|
|
|
if((sw & 0xff) == 0 &&
|
|
(cw & 0x103f) == 0x3f) {
|
|
/* We have some sort of FPU, but don't check exact model.
|
|
* Set CR0_NE and CR0_MP to handle fpu exceptions
|
|
* in native mode. */
|
|
write_cr0(read_cr0() | CR0_MP_NE);
|
|
get_cpulocal_var(fpu_presence) = 1;
|
|
if(_cpufeature(_CPUF_I386_FXSR)) {
|
|
u32_t cr4 = read_cr4() | CR4_OSFXSR; /* Enable FXSR. */
|
|
|
|
/* OSXMMEXCPT if supported
|
|
* FXSR feature can be available without SSE
|
|
*/
|
|
if(_cpufeature(_CPUF_I386_SSE))
|
|
cr4 |= CR4_OSXMMEXCPT;
|
|
|
|
write_cr4(cr4);
|
|
osfxsr_feature = 1;
|
|
} else {
|
|
osfxsr_feature = 0;
|
|
}
|
|
} else {
|
|
/* No FPU presents. */
|
|
get_cpulocal_var(fpu_presence) = 0;
|
|
osfxsr_feature = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void save_local_fpu(struct proc *pr, int retain)
|
|
{
|
|
char *state = pr->p_seg.fpu_state;
|
|
|
|
/* Save process FPU context. If the 'retain' flag is set, keep the FPU
|
|
* state as is. If the flag is not set, the state is undefined upon
|
|
* return, and the caller is responsible for reloading a proper state.
|
|
*/
|
|
|
|
if(!is_fpu())
|
|
return;
|
|
|
|
assert(state);
|
|
|
|
if(osfxsr_feature) {
|
|
fxsave(state);
|
|
} else {
|
|
fnsave(state);
|
|
if (retain)
|
|
(void) frstor(state);
|
|
}
|
|
}
|
|
|
|
void save_fpu(struct proc *pr)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (cpuid != pr->p_cpu) {
|
|
int stopped;
|
|
|
|
/* remember if the process was already stopped */
|
|
stopped = RTS_ISSET(pr, RTS_PROC_STOP);
|
|
|
|
/* stop the remote process and force its context to be saved */
|
|
smp_schedule_stop_proc_save_ctx(pr);
|
|
|
|
/*
|
|
* If the process wasn't stopped let the process run again. The
|
|
* process is kept block by the fact that the kernel cannot run
|
|
* on its cpu
|
|
*/
|
|
if (!stopped)
|
|
RTS_UNSET(pr, RTS_PROC_STOP);
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (get_cpulocal_var(fpu_owner) == pr) {
|
|
disable_fpu_exception();
|
|
save_local_fpu(pr, TRUE /*retain*/);
|
|
}
|
|
}
|
|
|
|
/* reserve a chunk of memory for fpu state; every one has to
|
|
* be FPUALIGN-aligned.
|
|
*/
|
|
static char fpu_state[NR_PROCS][FPU_XFP_SIZE] __aligned(FPUALIGN);
|
|
|
|
void arch_proc_reset(struct proc *pr)
|
|
{
|
|
char *v = NULL;
|
|
struct stackframe_s reg;
|
|
|
|
assert(pr->p_nr < NR_PROCS);
|
|
|
|
if(pr->p_nr >= 0) {
|
|
v = fpu_state[pr->p_nr];
|
|
/* verify alignment */
|
|
assert(!((vir_bytes)v % FPUALIGN));
|
|
/* initialize state */
|
|
memset(v, 0, FPU_XFP_SIZE);
|
|
}
|
|
|
|
/* Clear process state. */
|
|
memset(®, 0, sizeof(pr->p_reg));
|
|
if(iskerneln(pr->p_nr))
|
|
reg.psw = INIT_TASK_PSW;
|
|
else
|
|
reg.psw = INIT_PSW;
|
|
|
|
pr->p_seg.fpu_state = v;
|
|
|
|
/* Initialize the fundamentals that are (initially) the same for all
|
|
* processes - the segment selectors it gets to use.
|
|
*/
|
|
pr->p_reg.cs = USER_CS_SELECTOR;
|
|
pr->p_reg.gs =
|
|
pr->p_reg.fs =
|
|
pr->p_reg.ss =
|
|
pr->p_reg.es =
|
|
pr->p_reg.ds = USER_DS_SELECTOR;
|
|
|
|
/* set full context and make sure it gets restored */
|
|
arch_proc_setcontext(pr, ®, 0, KTS_FULLCONTEXT);
|
|
}
|
|
|
|
void arch_set_secondary_ipc_return(struct proc *p, u32_t val)
|
|
{
|
|
p->p_reg.bx = val;
|
|
}
|
|
|
|
int restore_fpu(struct proc *pr)
|
|
{
|
|
int failed;
|
|
char *state = pr->p_seg.fpu_state;
|
|
|
|
assert(state);
|
|
|
|
if(!proc_used_fpu(pr)) {
|
|
fninit();
|
|
pr->p_misc_flags |= MF_FPU_INITIALIZED;
|
|
} else {
|
|
if(osfxsr_feature) {
|
|
failed = fxrstor(state);
|
|
} else {
|
|
failed = frstor(state);
|
|
}
|
|
|
|
if (failed) return EINVAL;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
void cpu_identify(void)
|
|
{
|
|
u32_t eax, ebx, ecx, edx;
|
|
unsigned cpu = cpuid;
|
|
|
|
eax = 0;
|
|
_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
if (ebx == INTEL_CPUID_GEN_EBX && ecx == INTEL_CPUID_GEN_ECX &&
|
|
edx == INTEL_CPUID_GEN_EDX) {
|
|
cpu_info[cpu].vendor = CPU_VENDOR_INTEL;
|
|
} else if (ebx == AMD_CPUID_GEN_EBX && ecx == AMD_CPUID_GEN_ECX &&
|
|
edx == AMD_CPUID_GEN_EDX) {
|
|
cpu_info[cpu].vendor = CPU_VENDOR_AMD;
|
|
} else
|
|
cpu_info[cpu].vendor = CPU_VENDOR_UNKNOWN;
|
|
|
|
if (eax == 0)
|
|
return;
|
|
|
|
eax = 1;
|
|
_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
cpu_info[cpu].family = (eax >> 8) & 0xf;
|
|
if (cpu_info[cpu].family == 0xf)
|
|
cpu_info[cpu].family += (eax >> 20) & 0xff;
|
|
cpu_info[cpu].model = (eax >> 4) & 0xf;
|
|
if (cpu_info[cpu].model == 0xf || cpu_info[cpu].model == 0x6)
|
|
cpu_info[cpu].model += ((eax >> 16) & 0xf) << 4 ;
|
|
cpu_info[cpu].stepping = eax & 0xf;
|
|
cpu_info[cpu].flags[0] = ecx;
|
|
cpu_info[cpu].flags[1] = edx;
|
|
}
|
|
|
|
void arch_init(void)
|
|
{
|
|
k_stacks = (void*) &k_stacks_start;
|
|
assert(!((vir_bytes) k_stacks % K_STACK_SIZE));
|
|
|
|
#ifndef CONFIG_SMP
|
|
/*
|
|
* use stack 0 and cpu id 0 on a single processor machine, SMP
|
|
* configuration does this in smp_init() for all cpus at once
|
|
*/
|
|
tss_init(0, get_k_stack_top(0));
|
|
#endif
|
|
|
|
#if !CONFIG_OXPCIE
|
|
ser_init();
|
|
#endif
|
|
|
|
#ifdef USE_ACPI
|
|
acpi_init();
|
|
#endif
|
|
|
|
#if defined(USE_APIC) && !defined(CONFIG_SMP)
|
|
if (config_no_apic) {
|
|
DEBUGBASIC(("APIC disabled, using legacy PIC\n"));
|
|
}
|
|
else if (!apic_single_cpu_init()) {
|
|
DEBUGBASIC(("APIC not present, using legacy PIC\n"));
|
|
}
|
|
#endif
|
|
|
|
/* Reserve some BIOS ranges */
|
|
cut_memmap(&kinfo, BIOS_MEM_BEGIN, BIOS_MEM_END);
|
|
cut_memmap(&kinfo, BASE_MEM_TOP, UPPER_MEM_END);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_ser_debug *
|
|
*===========================================================================*/
|
|
void do_ser_debug()
|
|
{
|
|
u8_t c, lsr;
|
|
|
|
#if CONFIG_OXPCIE
|
|
{
|
|
int oxin;
|
|
if((oxin = oxpcie_in()) >= 0)
|
|
ser_debug(oxin);
|
|
}
|
|
#endif
|
|
|
|
lsr= inb(COM1_LSR);
|
|
if (!(lsr & LSR_DR))
|
|
return;
|
|
c = inb(COM1_RBR);
|
|
ser_debug(c);
|
|
}
|
|
|
|
static void ser_dump_queue_cpu(unsigned cpu)
|
|
{
|
|
int q;
|
|
struct proc ** rdy_head;
|
|
|
|
rdy_head = get_cpu_var(cpu, run_q_head);
|
|
|
|
for(q = 0; q < NR_SCHED_QUEUES; q++) {
|
|
struct proc *p;
|
|
if(rdy_head[q]) {
|
|
printf("%2d: ", q);
|
|
for(p = rdy_head[q]; p; p = p->p_nextready) {
|
|
printf("%s / %d ", p->p_name, p->p_endpoint);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ser_dump_queues(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned cpu;
|
|
|
|
printf("--- run queues ---\n");
|
|
for (cpu = 0; cpu < ncpus; cpu++) {
|
|
printf("CPU %d :\n", cpu);
|
|
ser_dump_queue_cpu(cpu);
|
|
}
|
|
#else
|
|
ser_dump_queue_cpu(0);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void dump_bkl_usage(void)
|
|
{
|
|
unsigned cpu;
|
|
|
|
printf("--- BKL usage ---\n");
|
|
for (cpu = 0; cpu < ncpus; cpu++) {
|
|
printf("cpu %3d kernel ticks 0x%x%08x bkl ticks 0x%x%08x succ %d tries %d\n", cpu,
|
|
ex64hi(kernel_ticks[cpu]),
|
|
ex64lo(kernel_ticks[cpu]),
|
|
ex64hi(bkl_ticks[cpu]),
|
|
ex64lo(bkl_ticks[cpu]),
|
|
bkl_succ[cpu], bkl_tries[cpu]);
|
|
}
|
|
}
|
|
|
|
static void reset_bkl_usage(void)
|
|
{
|
|
memset(kernel_ticks, 0, sizeof(kernel_ticks));
|
|
memset(bkl_ticks, 0, sizeof(bkl_ticks));
|
|
memset(bkl_tries, 0, sizeof(bkl_tries));
|
|
memset(bkl_succ, 0, sizeof(bkl_succ));
|
|
}
|
|
#endif
|
|
|
|
static void ser_debug(const int c)
|
|
{
|
|
serial_debug_active = 1;
|
|
|
|
switch(c)
|
|
{
|
|
case 'Q':
|
|
minix_shutdown(NULL);
|
|
NOT_REACHABLE;
|
|
#ifdef CONFIG_SMP
|
|
case 'B':
|
|
dump_bkl_usage();
|
|
break;
|
|
case 'b':
|
|
reset_bkl_usage();
|
|
break;
|
|
#endif
|
|
case '1':
|
|
ser_dump_proc();
|
|
break;
|
|
case '2':
|
|
ser_dump_queues();
|
|
break;
|
|
#ifdef CONFIG_SMP
|
|
case '4':
|
|
ser_dump_proc_cpu();
|
|
break;
|
|
#endif
|
|
case '5':
|
|
ser_dump_vfs();
|
|
break;
|
|
#if DEBUG_TRACE
|
|
#define TOGGLECASE(ch, flag) \
|
|
case ch: { \
|
|
if(verboseflags & flag) { \
|
|
verboseflags &= ~flag; \
|
|
printf("%s disabled\n", #flag); \
|
|
} else { \
|
|
verboseflags |= flag; \
|
|
printf("%s enabled\n", #flag); \
|
|
} \
|
|
break; \
|
|
}
|
|
TOGGLECASE('8', VF_SCHEDULING)
|
|
TOGGLECASE('9', VF_PICKPROC)
|
|
#endif
|
|
#ifdef USE_APIC
|
|
case 'I':
|
|
dump_apic_irq_state();
|
|
break;
|
|
#endif
|
|
}
|
|
serial_debug_active = 0;
|
|
}
|
|
|
|
#if DEBUG_SERIAL
|
|
|
|
static void ser_dump_vfs()
|
|
{
|
|
/* Notify VFS it has to generate stack traces. Kernel can't do that as
|
|
* it's not aware of user space threads.
|
|
*/
|
|
mini_notify(proc_addr(KERNEL), VFS_PROC_NR);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void ser_dump_proc_cpu(void)
|
|
{
|
|
struct proc *pp;
|
|
unsigned cpu;
|
|
|
|
for (cpu = 0; cpu < ncpus; cpu++) {
|
|
printf("CPU %d processes : \n", cpu);
|
|
for (pp= BEG_USER_ADDR; pp < END_PROC_ADDR; pp++) {
|
|
if (isemptyp(pp) || pp->p_cpu != cpu)
|
|
continue;
|
|
print_proc(pp);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif /* DEBUG_SERIAL */
|
|
|
|
#if SPROFILE
|
|
|
|
int arch_init_profile_clock(const u32_t freq)
|
|
{
|
|
int r;
|
|
/* Set CMOS timer frequency. */
|
|
outb(RTC_INDEX, RTC_REG_A);
|
|
outb(RTC_IO, RTC_A_DV_OK | freq);
|
|
/* Enable CMOS timer interrupts. */
|
|
outb(RTC_INDEX, RTC_REG_B);
|
|
r = inb(RTC_IO);
|
|
outb(RTC_INDEX, RTC_REG_B);
|
|
outb(RTC_IO, r | RTC_B_PIE);
|
|
/* Mandatory read of CMOS register to enable timer interrupts. */
|
|
outb(RTC_INDEX, RTC_REG_C);
|
|
inb(RTC_IO);
|
|
|
|
return CMOS_CLOCK_IRQ;
|
|
}
|
|
|
|
void arch_stop_profile_clock(void)
|
|
{
|
|
int r;
|
|
/* Disable CMOS timer interrupts. */
|
|
outb(RTC_INDEX, RTC_REG_B);
|
|
r = inb(RTC_IO);
|
|
outb(RTC_INDEX, RTC_REG_B);
|
|
outb(RTC_IO, r & ~RTC_B_PIE);
|
|
}
|
|
|
|
void arch_ack_profile_clock(void)
|
|
{
|
|
/* Mandatory read of CMOS register to re-enable timer interrupts. */
|
|
outb(RTC_INDEX, RTC_REG_C);
|
|
inb(RTC_IO);
|
|
}
|
|
|
|
#endif
|
|
|
|
void arch_do_syscall(struct proc *proc)
|
|
{
|
|
/* do_ipc assumes that it's running because of the current process */
|
|
assert(proc == get_cpulocal_var(proc_ptr));
|
|
/* Make the system call, for real this time. */
|
|
assert(proc->p_misc_flags & MF_SC_DEFER);
|
|
proc->p_reg.retreg =
|
|
do_ipc(proc->p_defer.r1, proc->p_defer.r2, proc->p_defer.r3);
|
|
}
|
|
|
|
struct proc * arch_finish_switch_to_user(void)
|
|
{
|
|
char * stk;
|
|
struct proc * p;
|
|
|
|
#ifdef CONFIG_SMP
|
|
stk = (char *)tss[cpuid].sp0;
|
|
#else
|
|
stk = (char *)tss[0].sp0;
|
|
#endif
|
|
/* set pointer to the process to run on the stack */
|
|
p = get_cpulocal_var(proc_ptr);
|
|
*((reg_t *)stk) = (reg_t) p;
|
|
|
|
/* make sure IF is on in FLAGS so that interrupts won't be disabled
|
|
* once p's context is restored.
|
|
*/
|
|
p->p_reg.psw |= IF_MASK;
|
|
|
|
/* Set TRACEBIT state properly. */
|
|
if(p->p_misc_flags & MF_STEP)
|
|
p->p_reg.psw |= TRACEBIT;
|
|
else
|
|
p->p_reg.psw &= ~TRACEBIT;
|
|
|
|
return p;
|
|
}
|
|
|
|
void arch_proc_setcontext(struct proc *p, struct stackframe_s *state,
|
|
int isuser, int trap_style)
|
|
{
|
|
if(isuser) {
|
|
/* Restore user bits of psw from sc, maintain system bits
|
|
* from proc.
|
|
*/
|
|
state->psw = (state->psw & X86_FLAGS_USER) |
|
|
(p->p_reg.psw & ~X86_FLAGS_USER);
|
|
}
|
|
|
|
/* someone wants to totally re-initialize process state */
|
|
assert(sizeof(p->p_reg) == sizeof(*state));
|
|
if(state != &p->p_reg) {
|
|
memcpy(&p->p_reg, state, sizeof(*state));
|
|
}
|
|
|
|
/* further code is instructed to not touch the context
|
|
* any more
|
|
*/
|
|
p->p_misc_flags |= MF_CONTEXT_SET;
|
|
|
|
/* on x86 this requires returning using iret (KTS_INT)
|
|
* so that the full context is restored instead of relying on
|
|
* the userspace doing it (as it would do on SYSEXIT).
|
|
* as ESP and EIP are also reset, userspace won't try to
|
|
* restore bogus context after returning.
|
|
*
|
|
* if the process is not blocked, or the kernel will ignore
|
|
* our trap style, we needn't panic but things will probably
|
|
* not go well for the process (restored context will be ignored)
|
|
* and the situation should be debugged.
|
|
*/
|
|
if(!(p->p_rts_flags)) {
|
|
printf("WARNINIG: setting full context of runnable process\n");
|
|
print_proc(p);
|
|
util_stacktrace();
|
|
}
|
|
if(p->p_seg.p_kern_trap_style == KTS_NONE)
|
|
printf("WARNINIG: setting full context of out-of-kernel process\n");
|
|
p->p_seg.p_kern_trap_style = trap_style;
|
|
}
|
|
|
|
void restore_user_context(struct proc *p)
|
|
{
|
|
int trap_style = p->p_seg.p_kern_trap_style;
|
|
#if 0
|
|
#define TYPES 10
|
|
static int restores[TYPES], n = 0;
|
|
|
|
if(trap_style >= 0 && trap_style < TYPES)
|
|
restores[trap_style]++;
|
|
|
|
if(!(n++ % 500000)) {
|
|
int t;
|
|
for(t = 0; t < TYPES; t++)
|
|
if(restores[t])
|
|
printf("%d: %d ", t, restores[t]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
p->p_seg.p_kern_trap_style = KTS_NONE;
|
|
|
|
if(trap_style == KTS_SYSENTER) {
|
|
restore_user_context_sysenter(p);
|
|
NOT_REACHABLE;
|
|
}
|
|
|
|
if(trap_style == KTS_SYSCALL) {
|
|
restore_user_context_syscall(p);
|
|
NOT_REACHABLE;
|
|
}
|
|
|
|
switch(trap_style) {
|
|
case KTS_NONE:
|
|
panic("no entry trap style known");
|
|
case KTS_INT_HARD:
|
|
case KTS_INT_UM:
|
|
case KTS_FULLCONTEXT:
|
|
case KTS_INT_ORIG:
|
|
restore_user_context_int(p);
|
|
NOT_REACHABLE;
|
|
default:
|
|
panic("unknown trap style recorded");
|
|
NOT_REACHABLE;
|
|
}
|
|
|
|
NOT_REACHABLE;
|
|
}
|
|
|
|
void fpu_sigcontext(struct proc *pr, struct sigframe_sigcontext *fr, struct sigcontext *sc)
|
|
{
|
|
int fp_error;
|
|
|
|
if (osfxsr_feature) {
|
|
fp_error = sc->sc_fpu_state.xfp_regs.fp_status &
|
|
~sc->sc_fpu_state.xfp_regs.fp_control;
|
|
} else {
|
|
fp_error = sc->sc_fpu_state.fpu_regs.fp_status &
|
|
~sc->sc_fpu_state.fpu_regs.fp_control;
|
|
}
|
|
|
|
if (fp_error & 0x001) { /* Invalid op */
|
|
/*
|
|
* swd & 0x240 == 0x040: Stack Underflow
|
|
* swd & 0x240 == 0x240: Stack Overflow
|
|
* User must clear the SF bit (0x40) if set
|
|
*/
|
|
fr->sf_code = FPE_FLTINV;
|
|
} else if (fp_error & 0x004) {
|
|
fr->sf_code = FPE_FLTDIV; /* Divide by Zero */
|
|
} else if (fp_error & 0x008) {
|
|
fr->sf_code = FPE_FLTOVF; /* Overflow */
|
|
} else if (fp_error & 0x012) {
|
|
fr->sf_code = FPE_FLTUND; /* Denormal, Underflow */
|
|
} else if (fp_error & 0x020) {
|
|
fr->sf_code = FPE_FLTRES; /* Precision */
|
|
} else {
|
|
fr->sf_code = 0; /* XXX - probably should be used for FPE_INTOVF or
|
|
* FPE_INTDIV */
|
|
}
|
|
}
|
|
|
|
reg_t arch_get_sp(struct proc *p) { return p->p_reg.sp; }
|
|
|
|
#if !CONFIG_OXPCIE
|
|
static void ser_init(void)
|
|
{
|
|
unsigned char lcr;
|
|
unsigned divisor;
|
|
|
|
/* keep BIOS settings if cttybaud is not set */
|
|
if (kinfo.serial_debug_baud <= 0) return;
|
|
|
|
/* set DLAB to make baud accessible */
|
|
lcr = LCR_8BIT | LCR_1STOP | LCR_NPAR;
|
|
outb(COM1_LCR, lcr | LCR_DLAB);
|
|
|
|
/* set baud rate */
|
|
divisor = UART_BASE_FREQ / kinfo.serial_debug_baud;
|
|
if (divisor < 1) divisor = 1;
|
|
if (divisor > 65535) divisor = 65535;
|
|
|
|
outb(COM1_DLL, divisor & 0xff);
|
|
outb(COM1_DLM, (divisor >> 8) & 0xff);
|
|
|
|
/* clear DLAB */
|
|
outb(COM1_LCR, lcr);
|
|
}
|
|
#endif
|