#define _SYSTEM 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "proto.h" #include "glo.h" #include "util.h" #include "vm.h" #include "sanitycheck.h" static int vm_self_pages; /* PDE used to map in kernel, kernel physical address. */ #define MAX_PAGEDIR_PDES 5 static struct pdm { int pdeno; u32_t val; phys_bytes phys; u32_t *page_directories; } pagedir_mappings[MAX_PAGEDIR_PDES]; static multiboot_module_t *kern_mb_mod = NULL; static size_t kern_size = 0; static int kern_start_pde = -1; /* big page size available in hardware? */ static int bigpage_ok = 1; /* Our process table entry. */ struct vmproc *vmprocess = &vmproc[VM_PROC_NR]; /* Spare memory, ready to go after initialization, to avoid a * circular dependency on allocating memory and writing it into VM's * page table. */ #if SANITYCHECKS #define SPAREPAGES 200 #define STATIC_SPAREPAGES 190 #else #ifdef __arm__ # define SPAREPAGES 150 # define STATIC_SPAREPAGES 140 #else # define SPAREPAGES 20 # define STATIC_SPAREPAGES 15 #endif /* __arm__ */ #endif #ifdef __i386__ static u32_t global_bit = 0; #endif #define SPAREPAGEDIRS 1 #define STATIC_SPAREPAGEDIRS 1 int missing_sparedirs = SPAREPAGEDIRS; static struct { void *pagedir; phys_bytes phys; } sparepagedirs[SPAREPAGEDIRS]; extern char _end; #define is_staticaddr(v) ((vir_bytes) (v) < (vir_bytes) &_end) #define MAX_KERNMAPPINGS 10 static struct { phys_bytes phys_addr; /* Physical addr. */ phys_bytes len; /* Length in bytes. */ vir_bytes vir_addr; /* Offset in page table. */ int flags; } kern_mappings[MAX_KERNMAPPINGS]; int kernmappings = 0; /* Clicks must be pages, as * - they must be page aligned to map them * - they must be a multiple of the page size * - it's inconvenient to have them bigger than pages, because we often want * just one page * May as well require them to be equal then. */ #if CLICK_SIZE != VM_PAGE_SIZE #error CLICK_SIZE must be page size. #endif static void *spare_pagequeue; static char static_sparepages[VM_PAGE_SIZE*STATIC_SPAREPAGES] __aligned(VM_PAGE_SIZE); #if defined(__arm__) static char static_sparepagedirs[ARCH_PAGEDIR_SIZE*STATIC_SPAREPAGEDIRS + ARCH_PAGEDIR_SIZE] __aligned(ARCH_PAGEDIR_SIZE); #endif #if SANITYCHECKS /*===========================================================================* * pt_sanitycheck * *===========================================================================*/ void pt_sanitycheck(pt_t *pt, const char *file, int line) { /* Basic pt sanity check. */ int slot; MYASSERT(pt); MYASSERT(pt->pt_dir); MYASSERT(pt->pt_dir_phys); for(slot = 0; slot < ELEMENTS(vmproc); slot++) { if(pt == &vmproc[slot].vm_pt) break; } if(slot >= ELEMENTS(vmproc)) { panic("pt_sanitycheck: passed pt not in any proc"); } MYASSERT(usedpages_add(pt->pt_dir_phys, VM_PAGE_SIZE) == OK); } #endif /*===========================================================================* * findhole * *===========================================================================*/ static u32_t findhole(int pages) { /* Find a space in the virtual address space of VM. */ u32_t curv; int pde = 0, try_restart; static u32_t lastv = 0; pt_t *pt = &vmprocess->vm_pt; vir_bytes vmin, vmax; u32_t holev = NO_MEM; int holesize = -1; vmin = (vir_bytes) (&_end); /* marks end of VM BSS */ vmin += 1024*1024*1024; /* reserve 1GB virtual address space for VM heap */ vmin &= ARCH_VM_ADDR_MASK; vmax = vmin + 100 * 1024 * 1024; /* allow 100MB of address space for VM */ /* Input sanity check. */ assert(vmin + VM_PAGE_SIZE >= vmin); assert(vmax >= vmin + VM_PAGE_SIZE); assert((vmin % VM_PAGE_SIZE) == 0); assert((vmax % VM_PAGE_SIZE) == 0); assert(pages > 0); curv = lastv; if(curv < vmin || curv >= vmax) curv = vmin; try_restart = 1; /* Start looking for a free page starting at vmin. */ while(curv < vmax) { int pte; assert(curv >= vmin); assert(curv < vmax); pde = ARCH_VM_PDE(curv); pte = ARCH_VM_PTE(curv); if((pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT) && (pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) { /* there is a page here - so keep looking for holes */ holev = NO_MEM; holesize = 0; } else { /* there is no page here - so we have a hole, a bigger * one if we already had one */ if(holev == NO_MEM) { holev = curv; holesize = 1; } else holesize++; assert(holesize > 0); assert(holesize <= pages); /* if it's big enough, return it */ if(holesize == pages) { lastv = curv + VM_PAGE_SIZE; return holev; } } curv+=VM_PAGE_SIZE; /* if we reached the limit, start scanning from the beginning if * we haven't looked there yet */ if(curv >= vmax && try_restart) { try_restart = 0; curv = vmin; } } printf("VM: out of virtual address space in vm\n"); return NO_MEM; } /*===========================================================================* * vm_freepages * *===========================================================================*/ void vm_freepages(vir_bytes vir, int pages) { assert(!(vir % VM_PAGE_SIZE)); if(is_staticaddr(vir)) { printf("VM: not freeing static page\n"); return; } if(pt_writemap(vmprocess, &vmprocess->vm_pt, vir, MAP_NONE, pages*VM_PAGE_SIZE, 0, WMF_OVERWRITE | WMF_FREE) != OK) panic("vm_freepages: pt_writemap failed"); vm_self_pages--; #if SANITYCHECKS /* If SANITYCHECKS are on, flush tlb so accessing freed pages is * always trapped, also if not in tlb. */ if((sys_vmctl(SELF, VMCTL_FLUSHTLB, 0)) != OK) { panic("VMCTL_FLUSHTLB failed"); } #endif } /*===========================================================================* * vm_getsparepage * *===========================================================================*/ static void *vm_getsparepage(phys_bytes *phys) { void *ptr; if(reservedqueue_alloc(spare_pagequeue, phys, &ptr) != OK) { printf("vm_getsparepage: no spare found\n"); return NULL; } assert(ptr); return ptr; } /*===========================================================================* * vm_getsparepagedir * *===========================================================================*/ static void *vm_getsparepagedir(phys_bytes *phys) { int s; assert(missing_sparedirs >= 0 && missing_sparedirs <= SPAREPAGEDIRS); for(s = 0; s < SPAREPAGEDIRS; s++) { if(sparepagedirs[s].pagedir) { void *sp; sp = sparepagedirs[s].pagedir; *phys = sparepagedirs[s].phys; sparepagedirs[s].pagedir = NULL; missing_sparedirs++; assert(missing_sparedirs >= 0 && missing_sparedirs <= SPAREPAGEDIRS); return sp; } } return NULL; } void *vm_mappages(phys_bytes p, int pages) { vir_bytes loc; int r; pt_t *pt = &vmprocess->vm_pt; /* Where in our virtual address space can we put it? */ loc = findhole(pages); if(loc == NO_MEM) { printf("vm_mappages: findhole failed\n"); return NULL; } /* Map this page into our address space. */ if((r=pt_writemap(vmprocess, pt, loc, p, VM_PAGE_SIZE*pages, ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW #if defined(__arm__) | ARM_VM_PTE_CACHED #endif , 0)) != OK) { printf("vm_mappages writemap failed\n"); return NULL; } if((r=sys_vmctl(SELF, VMCTL_FLUSHTLB, 0)) != OK) { panic("VMCTL_FLUSHTLB failed: %d", r); } assert(loc); return (void *) loc; } static int pt_init_done; /*===========================================================================* * vm_allocpage * *===========================================================================*/ void *vm_allocpages(phys_bytes *phys, int reason, int pages) { /* Allocate a page for use by VM itself. */ phys_bytes newpage; static int level = 0; void *ret; u32_t mem_flags = 0; assert(reason >= 0 && reason < VMP_CATEGORIES); assert(pages > 0); level++; assert(level >= 1); assert(level <= 2); if((level > 1) || !pt_init_done) { void *s; if(pages == 1) s=vm_getsparepage(phys); else if(pages == 4) s=vm_getsparepagedir(phys); else panic("%d pages", pages); level--; if(!s) { util_stacktrace(); printf("VM: warning: out of spare pages\n"); } if(!is_staticaddr(s)) vm_self_pages++; return s; } #if defined(__arm__) if (reason == VMP_PAGEDIR) { mem_flags |= PAF_ALIGN16K; } #endif /* Allocate page of memory for use by VM. As VM * is trusted, we don't have to pre-clear it. */ if((newpage = alloc_mem(pages, mem_flags)) == NO_MEM) { level--; printf("VM: vm_allocpage: alloc_mem failed\n"); return NULL; } *phys = CLICK2ABS(newpage); if(!(ret = vm_mappages(*phys, pages))) { level--; printf("VM: vm_allocpage: vm_mappages failed\n"); return NULL; } level--; vm_self_pages++; return ret; } void *vm_allocpage(phys_bytes *phys, int reason) { return vm_allocpages(phys, reason, 1); } /*===========================================================================* * vm_pagelock * *===========================================================================*/ void vm_pagelock(void *vir, int lockflag) { /* Mark a page allocated by vm_allocpage() unwritable, i.e. only for VM. */ vir_bytes m = (vir_bytes) vir; int r; u32_t flags = ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER; pt_t *pt; pt = &vmprocess->vm_pt; assert(!(m % VM_PAGE_SIZE)); if(!lockflag) flags |= ARCH_VM_PTE_RW; #if defined(__arm__) else flags |= ARCH_VM_PTE_RO; flags |= ARM_VM_PTE_CACHED ; #endif /* Update flags. */ if((r=pt_writemap(vmprocess, pt, m, 0, VM_PAGE_SIZE, flags, WMF_OVERWRITE | WMF_WRITEFLAGSONLY)) != OK) { panic("vm_lockpage: pt_writemap failed"); } if((r=sys_vmctl(SELF, VMCTL_FLUSHTLB, 0)) != OK) { panic("VMCTL_FLUSHTLB failed: %d", r); } return; } /*===========================================================================* * vm_addrok * *===========================================================================*/ int vm_addrok(void *vir, int writeflag) { pt_t *pt = &vmprocess->vm_pt; int pde, pte; vir_bytes v = (vir_bytes) vir; pde = ARCH_VM_PDE(v); pte = ARCH_VM_PTE(v); if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) { printf("addr not ok: missing pde %d\n", pde); return 0; } #if defined(__i386__) if(writeflag && !(pt->pt_dir[pde] & ARCH_VM_PTE_RW)) { printf("addr not ok: pde %d present but pde unwritable\n", pde); return 0; } #elif defined(__arm__) if(writeflag && (pt->pt_dir[pde] & ARCH_VM_PTE_RO)) { printf("addr not ok: pde %d present but pde unwritable\n", pde); return 0; } #endif if(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) { printf("addr not ok: missing pde %d / pte %d\n", pde, pte); return 0; } #if defined(__i386__) if(writeflag && !(pt->pt_pt[pde][pte] & ARCH_VM_PTE_RW)) { printf("addr not ok: pde %d / pte %d present but unwritable\n", pde, pte); #elif defined(__arm__) if(writeflag && (pt->pt_pt[pde][pte] & ARCH_VM_PTE_RO)) { printf("addr not ok: pde %d / pte %d present but unwritable\n", pde, pte); #endif return 0; } return 1; } /*===========================================================================* * pt_ptalloc * *===========================================================================*/ static int pt_ptalloc(pt_t *pt, int pde, u32_t flags) { /* Allocate a page table and write its address into the page directory. */ int i; phys_bytes pt_phys; u32_t *p; /* Argument must make sense. */ assert(pde >= 0 && pde < ARCH_VM_DIR_ENTRIES); assert(!(flags & ~(PTF_ALLFLAGS))); /* We don't expect to overwrite page directory entry, nor * storage for the page table. */ assert(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)); assert(!pt->pt_pt[pde]); /* Get storage for the page table. The allocation call may in fact * recursively create the directory entry as a side effect. In that * case, we free the newly allocated page and do nothing else. */ if (!(p = vm_allocpage(&pt_phys, VMP_PAGETABLE))) return ENOMEM; if (pt->pt_pt[pde]) { vm_freepages((vir_bytes) p, 1); assert(pt->pt_pt[pde]); return OK; } pt->pt_pt[pde] = p; for(i = 0; i < ARCH_VM_PT_ENTRIES; i++) pt->pt_pt[pde][i] = 0; /* Empty entry. */ /* Make page directory entry. * The PDE is always 'present,' 'writable,' and 'user accessible,' * relying on the PTE for protection. */ #if defined(__i386__) pt->pt_dir[pde] = (pt_phys & ARCH_VM_ADDR_MASK) | flags | ARCH_VM_PDE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW; #elif defined(__arm__) pt->pt_dir[pde] = (pt_phys & ARCH_VM_PDE_MASK) | ARCH_VM_PDE_PRESENT | ARM_VM_PDE_DOMAIN; //LSC FIXME #endif return OK; } /*===========================================================================* * pt_ptalloc_in_range * *===========================================================================*/ int pt_ptalloc_in_range(pt_t *pt, vir_bytes start, vir_bytes end, u32_t flags, int verify) { /* Allocate all the page tables in the range specified. */ int pde, first_pde, last_pde; first_pde = ARCH_VM_PDE(start); last_pde = ARCH_VM_PDE(end-1); assert(first_pde >= 0); assert(last_pde < ARCH_VM_DIR_ENTRIES); /* Scan all page-directory entries in the range. */ for(pde = first_pde; pde <= last_pde; pde++) { assert(!(pt->pt_dir[pde] & ARCH_VM_BIGPAGE)); if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) { int r; if(verify) { printf("pt_ptalloc_in_range: no pde %d\n", pde); return EFAULT; } assert(!pt->pt_dir[pde]); if((r=pt_ptalloc(pt, pde, flags)) != OK) { /* Couldn't do (complete) mapping. * Don't bother freeing any previously * allocated page tables, they're * still writable, don't point to nonsense, * and pt_ptalloc leaves the directory * and other data in a consistent state. */ return r; } assert(pt->pt_pt[pde]); } assert(pt->pt_pt[pde]); assert(pt->pt_dir[pde]); assert(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT); } return OK; } static const char *ptestr(u32_t pte) { #define FLAG(constant, name) { \ if(pte & (constant)) { strcat(str, name); strcat(str, " "); } \ } static char str[30]; if(!(pte & ARCH_VM_PTE_PRESENT)) { return "not present"; } str[0] = '\0'; #if defined(__i386__) FLAG(ARCH_VM_PTE_RW, "W"); #elif defined(__arm__) if(pte & ARCH_VM_PTE_RO) { strcat(str, "R "); } else { strcat(str, "W "); } #endif FLAG(ARCH_VM_PTE_USER, "U"); #if defined(__i386__) FLAG(I386_VM_PWT, "PWT"); FLAG(I386_VM_PCD, "PCD"); FLAG(I386_VM_ACC, "ACC"); FLAG(I386_VM_DIRTY, "DIRTY"); FLAG(I386_VM_PS, "PS"); FLAG(I386_VM_GLOBAL, "G"); FLAG(I386_VM_PTAVAIL1, "AV1"); FLAG(I386_VM_PTAVAIL2, "AV2"); FLAG(I386_VM_PTAVAIL3, "AV3"); #elif defined(__arm__) FLAG(ARM_VM_PTE_SUPER, "S"); FLAG(ARM_VM_PTE_S, "SH"); FLAG(ARM_VM_PTE_WB, "WB"); FLAG(ARM_VM_PTE_WT, "WT"); #endif return str; } /*===========================================================================* * pt_map_in_range * *===========================================================================*/ int pt_map_in_range(struct vmproc *src_vmp, struct vmproc *dst_vmp, vir_bytes start, vir_bytes end) { /* Transfer all the mappings from the pt of the source process to the pt of * the destination process in the range specified. */ int pde, pte; vir_bytes viraddr; pt_t *pt, *dst_pt; pt = &src_vmp->vm_pt; dst_pt = &dst_vmp->vm_pt; end = end ? end : VM_DATATOP; assert(start % VM_PAGE_SIZE == 0); assert(end % VM_PAGE_SIZE == 0); assert( /* ARCH_VM_PDE(start) >= 0 && */ start <= end); assert(ARCH_VM_PDE(end) < ARCH_VM_DIR_ENTRIES); #if LU_DEBUG printf("VM: pt_map_in_range: src = %d, dst = %d\n", src_vmp->vm_endpoint, dst_vmp->vm_endpoint); printf("VM: pt_map_in_range: transferring from 0x%08x (pde %d pte %d) to 0x%08x (pde %d pte %d)\n", start, ARCH_VM_PDE(start), ARCH_VM_PTE(start), end, ARCH_VM_PDE(end), ARCH_VM_PTE(end)); #endif /* Scan all page-table entries in the range. */ for(viraddr = start; viraddr <= end; viraddr += VM_PAGE_SIZE) { pde = ARCH_VM_PDE(viraddr); if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) { if(viraddr == VM_DATATOP) break; continue; } pte = ARCH_VM_PTE(viraddr); if(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) { if(viraddr == VM_DATATOP) break; continue; } /* Transfer the mapping. */ dst_pt->pt_pt[pde][pte] = pt->pt_pt[pde][pte]; if(viraddr == VM_DATATOP) break; } return OK; } /*===========================================================================* * pt_ptmap * *===========================================================================*/ int pt_ptmap(struct vmproc *src_vmp, struct vmproc *dst_vmp) { /* Transfer mappings to page dir and page tables from source process and * destination process. Make sure all the mappings are above the stack, not * to corrupt valid mappings in the data segment of the destination process. */ int pde, r; phys_bytes physaddr; vir_bytes viraddr; pt_t *pt; pt = &src_vmp->vm_pt; #if LU_DEBUG printf("VM: pt_ptmap: src = %d, dst = %d\n", src_vmp->vm_endpoint, dst_vmp->vm_endpoint); #endif /* Transfer mapping to the page directory. */ viraddr = (vir_bytes) pt->pt_dir; physaddr = pt->pt_dir_phys & ARCH_VM_ADDR_MASK; #if defined(__i386__) if((r=pt_writemap(dst_vmp, &dst_vmp->vm_pt, viraddr, physaddr, VM_PAGE_SIZE, ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW, #elif defined(__arm__) if((r=pt_writemap(dst_vmp, &dst_vmp->vm_pt, viraddr, physaddr, ARCH_PAGEDIR_SIZE, ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER | ARM_VM_PTE_CACHED , #endif WMF_OVERWRITE)) != OK) { return r; } #if LU_DEBUG printf("VM: pt_ptmap: transferred mapping to page dir: 0x%08x (0x%08x)\n", viraddr, physaddr); #endif /* Scan all non-reserved page-directory entries. */ for(pde=0; pde < ARCH_VM_DIR_ENTRIES; pde++) { if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) { continue; } /* Transfer mapping to the page table. */ viraddr = (vir_bytes) pt->pt_pt[pde]; #if defined(__i386__) physaddr = pt->pt_dir[pde] & ARCH_VM_ADDR_MASK; #elif defined(__arm__) physaddr = pt->pt_dir[pde] & ARCH_VM_PDE_MASK; #endif if((r=pt_writemap(dst_vmp, &dst_vmp->vm_pt, viraddr, physaddr, VM_PAGE_SIZE, ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_USER | ARCH_VM_PTE_RW #ifdef __arm__ | ARM_VM_PTE_CACHED #endif , WMF_OVERWRITE)) != OK) { return r; } } return OK; } void pt_clearmapcache(void) { /* Make sure kernel will invalidate tlb when using current * pagetable (i.e. vm's) to make new mappings before new cr3 * is loaded. */ if(sys_vmctl(SELF, VMCTL_CLEARMAPCACHE, 0) != OK) panic("VMCTL_CLEARMAPCACHE failed"); } int pt_writable(struct vmproc *vmp, vir_bytes v) { u32_t entry; pt_t *pt = &vmp->vm_pt; assert(!(v % VM_PAGE_SIZE)); int pde = ARCH_VM_PDE(v); int pte = ARCH_VM_PTE(v); assert(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT); assert(pt->pt_pt[pde]); entry = pt->pt_pt[pde][pte]; #if defined(__i386__) return((entry & PTF_WRITE) ? 1 : 0); #elif defined(__arm__) return((entry & ARCH_VM_PTE_RO) ? 0 : 1); #endif } /*===========================================================================* * pt_writemap * *===========================================================================*/ int pt_writemap(struct vmproc * vmp, pt_t *pt, vir_bytes v, phys_bytes physaddr, size_t bytes, u32_t flags, u32_t writemapflags) { /* Write mapping into page table. Allocate a new page table if necessary. */ /* Page directory and table entries for this virtual address. */ int p, pages; int verify = 0; int ret = OK; #ifdef CONFIG_SMP int vminhibit_clear = 0; /* FIXME * don't do it everytime, stop the process only on the first change and * resume the execution on the last change. Do in a wrapper of this * function */ if (vmp && vmp->vm_endpoint != NONE && vmp->vm_endpoint != VM_PROC_NR && !(vmp->vm_flags & VMF_EXITING)) { sys_vmctl(vmp->vm_endpoint, VMCTL_VMINHIBIT_SET, 0); vminhibit_clear = 1; } #endif if(writemapflags & WMF_VERIFY) verify = 1; assert(!(bytes % VM_PAGE_SIZE)); assert(!(flags & ~(PTF_ALLFLAGS))); pages = bytes / VM_PAGE_SIZE; /* MAP_NONE means to clear the mapping. It doesn't matter * what's actually written into the PTE if PRESENT * isn't on, so we can just write MAP_NONE into it. */ assert(physaddr == MAP_NONE || (flags & ARCH_VM_PTE_PRESENT)); assert(physaddr != MAP_NONE || !flags); /* First make sure all the necessary page tables are allocated, * before we start writing in any of them, because it's a pain * to undo our work properly. */ ret = pt_ptalloc_in_range(pt, v, v + VM_PAGE_SIZE*pages, flags, verify); if(ret != OK) { printf("VM: writemap: pt_ptalloc_in_range failed\n"); goto resume_exit; } /* Now write in them. */ for(p = 0; p < pages; p++) { u32_t entry; int pde = ARCH_VM_PDE(v); int pte = ARCH_VM_PTE(v); assert(!(v % VM_PAGE_SIZE)); assert(pte >= 0 && pte < ARCH_VM_PT_ENTRIES); assert(pde >= 0 && pde < ARCH_VM_DIR_ENTRIES); /* Page table has to be there. */ assert(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT); /* We do not expect it to be a bigpage. */ assert(!(pt->pt_dir[pde] & ARCH_VM_BIGPAGE)); /* Make sure page directory entry for this page table * is marked present and page table entry is available. */ assert(pt->pt_pt[pde]); #if SANITYCHECKS /* We don't expect to overwrite a page. */ if(!(writemapflags & (WMF_OVERWRITE|WMF_VERIFY))) assert(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)); #endif if(writemapflags & (WMF_WRITEFLAGSONLY|WMF_FREE)) { #if defined(__i386__) physaddr = pt->pt_pt[pde][pte] & ARCH_VM_ADDR_MASK; #elif defined(__arm__) physaddr = pt->pt_pt[pde][pte] & ARM_VM_PTE_MASK; #endif } if(writemapflags & WMF_FREE) { free_mem(ABS2CLICK(physaddr), 1); } /* Entry we will write. */ #if defined(__i386__) entry = (physaddr & ARCH_VM_ADDR_MASK) | flags; #elif defined(__arm__) entry = (physaddr & ARM_VM_PTE_MASK) | flags; #endif if(verify) { u32_t maskedentry; maskedentry = pt->pt_pt[pde][pte]; #if defined(__i386__) maskedentry &= ~(I386_VM_ACC|I386_VM_DIRTY); #endif /* Verify pagetable entry. */ #if defined(__i386__) if(entry & ARCH_VM_PTE_RW) { /* If we expect a writable page, allow a readonly page. */ maskedentry |= ARCH_VM_PTE_RW; } #elif defined(__arm__) if(!(entry & ARCH_VM_PTE_RO)) { /* If we expect a writable page, allow a readonly page. */ maskedentry &= ~ARCH_VM_PTE_RO; } maskedentry &= ~(ARM_VM_PTE_WB|ARM_VM_PTE_WT); #endif if(maskedentry != entry) { printf("pt_writemap: mismatch: "); #if defined(__i386__) if((entry & ARCH_VM_ADDR_MASK) != (maskedentry & ARCH_VM_ADDR_MASK)) { #elif defined(__arm__) if((entry & ARM_VM_PTE_MASK) != (maskedentry & ARM_VM_PTE_MASK)) { #endif printf("pt_writemap: physaddr mismatch (0x%lx, 0x%lx); ", (long)entry, (long)maskedentry); } else printf("phys ok; "); printf(" flags: found %s; ", ptestr(pt->pt_pt[pde][pte])); printf(" masked %s; ", ptestr(maskedentry)); printf(" expected %s\n", ptestr(entry)); printf("found 0x%x, wanted 0x%x\n", pt->pt_pt[pde][pte], entry); ret = EFAULT; goto resume_exit; } } else { /* Write pagetable entry. */ pt->pt_pt[pde][pte] = entry; } physaddr += VM_PAGE_SIZE; v += VM_PAGE_SIZE; } resume_exit: #ifdef CONFIG_SMP if (vminhibit_clear) { assert(vmp && vmp->vm_endpoint != NONE && vmp->vm_endpoint != VM_PROC_NR && !(vmp->vm_flags & VMF_EXITING)); sys_vmctl(vmp->vm_endpoint, VMCTL_VMINHIBIT_CLEAR, 0); } #endif return ret; } /*===========================================================================* * pt_checkrange * *===========================================================================*/ int pt_checkrange(pt_t *pt, vir_bytes v, size_t bytes, int write) { int p, pages; assert(!(bytes % VM_PAGE_SIZE)); pages = bytes / VM_PAGE_SIZE; for(p = 0; p < pages; p++) { int pde = ARCH_VM_PDE(v); int pte = ARCH_VM_PTE(v); assert(!(v % VM_PAGE_SIZE)); assert(pte >= 0 && pte < ARCH_VM_PT_ENTRIES); assert(pde >= 0 && pde < ARCH_VM_DIR_ENTRIES); /* Page table has to be there. */ if(!(pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT)) return EFAULT; /* Make sure page directory entry for this page table * is marked present and page table entry is available. */ assert((pt->pt_dir[pde] & ARCH_VM_PDE_PRESENT) && pt->pt_pt[pde]); if(!(pt->pt_pt[pde][pte] & ARCH_VM_PTE_PRESENT)) { return EFAULT; } #if defined(__i386__) if(write && !(pt->pt_pt[pde][pte] & ARCH_VM_PTE_RW)) { #elif defined(__arm__) if(write && (pt->pt_pt[pde][pte] & ARCH_VM_PTE_RO)) { #endif return EFAULT; } v += VM_PAGE_SIZE; } return OK; } /*===========================================================================* * pt_new * *===========================================================================*/ int pt_new(pt_t *pt) { /* Allocate a pagetable root. Allocate a page-aligned page directory * and set them to 0 (indicating no page tables are allocated). Lookup * its physical address as we'll need that in the future. Verify it's * page-aligned. */ int i, r; /* Don't ever re-allocate/re-move a certain process slot's * page directory once it's been created. This is a fraction * faster, but also avoids having to invalidate the page * mappings from in-kernel page tables pointing to * the page directories (the page_directories data). */ if(!pt->pt_dir && !(pt->pt_dir = vm_allocpages((phys_bytes *)&pt->pt_dir_phys, VMP_PAGEDIR, ARCH_PAGEDIR_SIZE/VM_PAGE_SIZE))) { return ENOMEM; } assert(!((u32_t)pt->pt_dir_phys % ARCH_PAGEDIR_SIZE)); for(i = 0; i < ARCH_VM_DIR_ENTRIES; i++) { pt->pt_dir[i] = 0; /* invalid entry (PRESENT bit = 0) */ pt->pt_pt[i] = NULL; } /* Where to start looking for free virtual address space? */ pt->pt_virtop = 0; /* Map in kernel. */ if((r=pt_mapkernel(pt)) != OK) return r; return OK; } static int freepde(void) { int p = kernel_boot_info.freepde_start++; assert(kernel_boot_info.freepde_start < ARCH_VM_DIR_ENTRIES); return p; } /*===========================================================================* * pt_init * *===========================================================================*/ void pt_init(void) { pt_t *newpt; int s, r, p; vir_bytes sparepages_mem; #if defined(__arm__) vir_bytes sparepagedirs_mem; #endif static u32_t currentpagedir[ARCH_VM_DIR_ENTRIES]; int m = kernel_boot_info.kern_mod; #if defined(__i386__) int global_bit_ok = 0; u32_t mypdbr; /* Page Directory Base Register (cr3) value */ #elif defined(__arm__) u32_t myttbr; #endif /* Find what the physical location of the kernel is. */ assert(m >= 0); assert(m < kernel_boot_info.mods_with_kernel); assert(kernel_boot_info.mods_with_kernel < MULTIBOOT_MAX_MODS); kern_mb_mod = &kernel_boot_info.module_list[m]; kern_size = kern_mb_mod->mod_end - kern_mb_mod->mod_start; assert(!(kern_mb_mod->mod_start % ARCH_BIG_PAGE_SIZE)); assert(!(kernel_boot_info.vir_kern_start % ARCH_BIG_PAGE_SIZE)); kern_start_pde = kernel_boot_info.vir_kern_start / ARCH_BIG_PAGE_SIZE; /* Get ourselves spare pages. */ sparepages_mem = (vir_bytes) static_sparepages; assert(!(sparepages_mem % VM_PAGE_SIZE)); #if defined(__arm__) /* Get ourselves spare pagedirs. */ sparepagedirs_mem = (vir_bytes) static_sparepagedirs; assert(!(sparepagedirs_mem % ARCH_PAGEDIR_SIZE)); #endif /* Spare pages are used to allocate memory before VM has its own page * table that things (i.e. arbitrary physical memory) can be mapped into. * We get it by pre-allocating it in our bss (allocated and mapped in by * the kernel) in static_sparepages. We also need the physical addresses * though; we look them up now so they are ready for use. */ #if defined(__arm__) missing_sparedirs = 0; assert(STATIC_SPAREPAGEDIRS <= SPAREPAGEDIRS); for(s = 0; s < SPAREPAGEDIRS; s++) { vir_bytes v = (sparepagedirs_mem + s*ARCH_PAGEDIR_SIZE);; phys_bytes ph; if((r=sys_umap(SELF, VM_D, (vir_bytes) v, ARCH_PAGEDIR_SIZE, &ph)) != OK) panic("pt_init: sys_umap failed: %d", r); if(s >= STATIC_SPAREPAGEDIRS) { sparepagedirs[s].pagedir = NULL; missing_sparedirs++; continue; } sparepagedirs[s].pagedir = (void *) v; sparepagedirs[s].phys = ph; } #endif if(!(spare_pagequeue = reservedqueue_new(SPAREPAGES, 1, 1, 0))) panic("reservedqueue_new for single pages failed"); assert(STATIC_SPAREPAGES < SPAREPAGES); for(s = 0; s < STATIC_SPAREPAGES; s++) { void *v = (void *) (sparepages_mem + s*VM_PAGE_SIZE); phys_bytes ph; if((r=sys_umap(SELF, VM_D, (vir_bytes) v, VM_PAGE_SIZE*SPAREPAGES, &ph)) != OK) panic("pt_init: sys_umap failed: %d", r); reservedqueue_add(spare_pagequeue, v, ph); } #if defined(__i386__) /* global bit and 4MB pages available? */ global_bit_ok = _cpufeature(_CPUF_I386_PGE); bigpage_ok = _cpufeature(_CPUF_I386_PSE); /* Set bit for PTE's and PDE's if available. */ if(global_bit_ok) global_bit = I386_VM_GLOBAL; #endif /* Now reserve another pde for kernel's own mappings. */ { int kernmap_pde; phys_bytes addr, len; int flags, pindex = 0; u32_t offset = 0; kernmap_pde = freepde(); offset = kernmap_pde * ARCH_BIG_PAGE_SIZE; while(sys_vmctl_get_mapping(pindex, &addr, &len, &flags) == OK) { int usedpde; vir_bytes vir; if(pindex >= MAX_KERNMAPPINGS) panic("VM: too many kernel mappings: %d", pindex); kern_mappings[pindex].phys_addr = addr; kern_mappings[pindex].len = len; kern_mappings[pindex].flags = flags; kern_mappings[pindex].vir_addr = offset; kern_mappings[pindex].flags = ARCH_VM_PTE_PRESENT; if(flags & VMMF_UNCACHED) #if defined(__i386__) kern_mappings[pindex].flags |= PTF_NOCACHE; #elif defined(__arm__) kern_mappings[pindex].flags |= ARM_VM_PTE_DEVICE; else { kern_mappings[pindex].flags |= ARM_VM_PTE_CACHED; } #endif if(flags & VMMF_USER) kern_mappings[pindex].flags |= ARCH_VM_PTE_USER; #if defined(__arm__) else kern_mappings[pindex].flags |= ARM_VM_PTE_SUPER; #endif if(flags & VMMF_WRITE) kern_mappings[pindex].flags |= ARCH_VM_PTE_RW; #if defined(__arm__) else kern_mappings[pindex].flags |= ARCH_VM_PTE_RO; #endif #if defined(__i386__) if(flags & VMMF_GLO) kern_mappings[pindex].flags |= I386_VM_GLOBAL; #endif if(addr % VM_PAGE_SIZE) panic("VM: addr unaligned: %lu", addr); if(len % VM_PAGE_SIZE) panic("VM: len unaligned: %lu", len); vir = offset; if(sys_vmctl_reply_mapping(pindex, vir) != OK) panic("VM: reply failed"); offset += len; pindex++; kernmappings++; usedpde = ARCH_VM_PDE(offset); while(usedpde > kernmap_pde) { int newpde = freepde(); assert(newpde == kernmap_pde+1); kernmap_pde = newpde; } } } /* Reserve PDEs available for mapping in the page directories. */ { int pd; for(pd = 0; pd < MAX_PAGEDIR_PDES; pd++) { struct pdm *pdm = &pagedir_mappings[pd]; pdm->pdeno = freepde(); phys_bytes ph; /* Allocate us a page table in which to * remember page directory pointers. */ if(!(pdm->page_directories = vm_allocpage(&ph, VMP_PAGETABLE))) { panic("no virt addr for vm mappings"); } memset(pdm->page_directories, 0, VM_PAGE_SIZE); pdm->phys = ph; #if defined(__i386__) pdm->val = (ph & ARCH_VM_ADDR_MASK) | ARCH_VM_PDE_PRESENT | ARCH_VM_PTE_RW; #elif defined(__arm__) pdm->val = (ph & ARCH_VM_PDE_MASK) | ARCH_VM_PDE_PRESENT | ARM_VM_PTE_CACHED | ARM_VM_PDE_DOMAIN; //LSC FIXME #endif } } /* Allright. Now. We have to make our own page directory and page tables, * that the kernel has already set up, accessible to us. It's easier to * understand if we just copy all the required pages (i.e. page directory * and page tables), and set up the pointers as if VM had done it itself. * * This allocation will happen without using any page table, and just * uses spare pages. */ newpt = &vmprocess->vm_pt; if(pt_new(newpt) != OK) panic("vm pt_new failed"); /* Get our current pagedir so we can see it. */ #if defined(__i386__) if(sys_vmctl_get_pdbr(SELF, &mypdbr) != OK) #elif defined(__arm__) if(sys_vmctl_get_pdbr(SELF, &myttbr) != OK) #endif panic("VM: sys_vmctl_get_pdbr failed"); #if defined(__i386__) if(sys_vircopy(NONE, mypdbr, SELF, (vir_bytes) currentpagedir, VM_PAGE_SIZE, 0) != OK) #elif defined(__arm__) if(sys_vircopy(NONE, myttbr, SELF, (vir_bytes) currentpagedir, ARCH_PAGEDIR_SIZE, 0) != OK) #endif panic("VM: sys_vircopy failed"); /* We have mapped in kernel ourselves; now copy mappings for VM * that kernel made, including allocations for BSS. Skip identity * mapping bits; just map in VM. */ for(p = 0; p < ARCH_VM_DIR_ENTRIES; p++) { u32_t entry = currentpagedir[p]; phys_bytes ptaddr_kern, ptaddr_us; /* BIGPAGEs are kernel mapping (do ourselves) or boot * identity mapping (don't want). */ if(!(entry & ARCH_VM_PDE_PRESENT)) continue; if((entry & ARCH_VM_BIGPAGE)) continue; if(pt_ptalloc(newpt, p, 0) != OK) panic("pt_ptalloc failed"); assert(newpt->pt_dir[p] & ARCH_VM_PDE_PRESENT); #if defined(__i386__) ptaddr_kern = entry & ARCH_VM_ADDR_MASK; ptaddr_us = newpt->pt_dir[p] & ARCH_VM_ADDR_MASK; #elif defined(__arm__) ptaddr_kern = entry & ARCH_VM_PDE_MASK; ptaddr_us = newpt->pt_dir[p] & ARCH_VM_PDE_MASK; #endif /* Copy kernel-initialized pagetable contents into our * normally accessible pagetable. */ if(sys_abscopy(ptaddr_kern, ptaddr_us, VM_PAGE_SIZE) != OK) panic("pt_init: abscopy failed"); } /* Inform kernel vm has a newly built page table. */ assert(vmproc[VM_PROC_NR].vm_endpoint == VM_PROC_NR); pt_bind(newpt, &vmproc[VM_PROC_NR]); pt_init_done = 1; /* All OK. */ return; } /*===========================================================================* * pt_bind * *===========================================================================*/ int pt_bind(pt_t *pt, struct vmproc *who) { int procslot, pdeslot; u32_t phys; void *pdes; int pagedir_pde; int slots_per_pde; int pages_per_pagedir = ARCH_PAGEDIR_SIZE/VM_PAGE_SIZE; struct pdm *pdm; slots_per_pde = ARCH_VM_PT_ENTRIES / pages_per_pagedir; /* Basic sanity checks. */ assert(who); assert(who->vm_flags & VMF_INUSE); assert(pt); procslot = who->vm_slot; pdm = &pagedir_mappings[procslot/slots_per_pde]; pdeslot = procslot%slots_per_pde; pagedir_pde = pdm->pdeno; assert(pdeslot >= 0); assert(procslot < ELEMENTS(vmproc)); assert(pdeslot < ARCH_VM_PT_ENTRIES / pages_per_pagedir); assert(pagedir_pde >= 0); #if defined(__i386__) phys = pt->pt_dir_phys & ARCH_VM_ADDR_MASK; #elif defined(__arm__) phys = pt->pt_dir_phys & ARM_VM_PTE_MASK; #endif assert(pt->pt_dir_phys == phys); assert(!(pt->pt_dir_phys % ARCH_PAGEDIR_SIZE)); /* Update "page directory pagetable." */ #if defined(__i386__) pdm->page_directories[pdeslot] = phys | ARCH_VM_PDE_PRESENT|ARCH_VM_PTE_RW; #elif defined(__arm__) { int i; for (i = 0; i < pages_per_pagedir; i++) { pdm->page_directories[pdeslot*pages_per_pagedir+i] = (phys+i*VM_PAGE_SIZE) | ARCH_VM_PTE_PRESENT | ARCH_VM_PTE_RW | ARM_VM_PTE_CACHED | ARCH_VM_PTE_USER; //LSC FIXME } } #endif /* This is where the PDE's will be visible to the kernel * in its address space. */ pdes = (void *) (pagedir_pde*ARCH_BIG_PAGE_SIZE + #if defined(__i386__) pdeslot * VM_PAGE_SIZE); #elif defined(__arm__) pdeslot * ARCH_PAGEDIR_SIZE); #endif /* Tell kernel about new page table root. */ return sys_vmctl_set_addrspace(who->vm_endpoint, pt->pt_dir_phys , pdes); } /*===========================================================================* * pt_free * *===========================================================================*/ void pt_free(pt_t *pt) { /* Free memory associated with this pagetable. */ int i; for(i = 0; i < ARCH_VM_DIR_ENTRIES; i++) if(pt->pt_pt[i]) vm_freepages((vir_bytes) pt->pt_pt[i], 1); return; } /*===========================================================================* * pt_mapkernel * *===========================================================================*/ int pt_mapkernel(pt_t *pt) { int i; int kern_pde = kern_start_pde; phys_bytes addr, mapped = 0; /* Any page table needs to map in the kernel address space. */ assert(bigpage_ok); assert(kern_pde >= 0); /* pt_init() has made sure this is ok. */ addr = kern_mb_mod->mod_start; /* Actually mapping in kernel */ while(mapped < kern_size) { #if defined(__i386__) pt->pt_dir[kern_pde] = addr | ARCH_VM_PDE_PRESENT | ARCH_VM_BIGPAGE | ARCH_VM_PTE_RW | global_bit; #elif defined(__arm__) pt->pt_dir[kern_pde] = (addr & ARM_VM_SECTION_MASK) | ARM_VM_SECTION | ARM_VM_SECTION_DOMAIN | ARM_VM_SECTION_CACHED | ARM_VM_SECTION_SUPER; #endif kern_pde++; mapped += ARCH_BIG_PAGE_SIZE; addr += ARCH_BIG_PAGE_SIZE; } /* Kernel also wants to know about all page directories. */ { int pd; for(pd = 0; pd < MAX_PAGEDIR_PDES; pd++) { struct pdm *pdm = &pagedir_mappings[pd]; assert(pdm->pdeno > 0); assert(pdm->pdeno > kern_pde); pt->pt_dir[pdm->pdeno] = pdm->val; } } /* Kernel also wants various mappings of its own. */ for(i = 0; i < kernmappings; i++) { int r; if((r=pt_writemap(NULL, pt, kern_mappings[i].vir_addr, kern_mappings[i].phys_addr, kern_mappings[i].len, kern_mappings[i].flags, 0)) != OK) { return r; } } return OK; } int get_vm_self_pages(void) { return vm_self_pages; }