660 lines
23 KiB
C
660 lines
23 KiB
C
|
/**
|
||
|
* @file
|
||
|
* Dynamic memory manager
|
||
|
*
|
||
|
* This is a lightweight replacement for the standard C library malloc().
|
||
|
*
|
||
|
* If you want to use the standard C library malloc() instead, define
|
||
|
* MEM_LIBC_MALLOC to 1 in your lwipopts.h
|
||
|
*
|
||
|
* To let mem_malloc() use pools (prevents fragmentation and is much faster than
|
||
|
* a heap but might waste some memory), define MEM_USE_POOLS to 1, define
|
||
|
* MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
|
||
|
* of pools like this (more pools can be added between _START and _END):
|
||
|
*
|
||
|
* Define three pools with sizes 256, 512, and 1512 bytes
|
||
|
* LWIP_MALLOC_MEMPOOL_START
|
||
|
* LWIP_MALLOC_MEMPOOL(20, 256)
|
||
|
* LWIP_MALLOC_MEMPOOL(10, 512)
|
||
|
* LWIP_MALLOC_MEMPOOL(5, 1512)
|
||
|
* LWIP_MALLOC_MEMPOOL_END
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without modification,
|
||
|
* are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
* 3. The name of the author may not be used to endorse or promote products
|
||
|
* derived from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
||
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
||
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
||
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
||
|
* OF SUCH DAMAGE.
|
||
|
*
|
||
|
* This file is part of the lwIP TCP/IP stack.
|
||
|
*
|
||
|
* Author: Adam Dunkels <adam@sics.se>
|
||
|
* Simon Goldschmidt
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "lwip/opt.h"
|
||
|
|
||
|
#if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */
|
||
|
|
||
|
#include "lwip/def.h"
|
||
|
#include "lwip/mem.h"
|
||
|
#include "lwip/sys.h"
|
||
|
#include "lwip/stats.h"
|
||
|
#include "lwip/err.h"
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
#if MEM_USE_POOLS
|
||
|
/* lwIP head implemented with different sized pools */
|
||
|
|
||
|
/**
|
||
|
* Allocate memory: determine the smallest pool that is big enough
|
||
|
* to contain an element of 'size' and get an element from that pool.
|
||
|
*
|
||
|
* @param size the size in bytes of the memory needed
|
||
|
* @return a pointer to the allocated memory or NULL if the pool is empty
|
||
|
*/
|
||
|
void *
|
||
|
mem_malloc(mem_size_t size)
|
||
|
{
|
||
|
void *ret;
|
||
|
struct memp_malloc_helper *element;
|
||
|
memp_t poolnr;
|
||
|
mem_size_t required_size = size + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
|
||
|
|
||
|
for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
|
||
|
#if MEM_USE_POOLS_TRY_BIGGER_POOL
|
||
|
again:
|
||
|
#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
|
||
|
/* is this pool big enough to hold an element of the required size
|
||
|
plus a struct memp_malloc_helper that saves the pool this element came from? */
|
||
|
if (required_size <= memp_sizes[poolnr]) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (poolnr > MEMP_POOL_LAST) {
|
||
|
LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
|
||
|
return NULL;
|
||
|
}
|
||
|
element = (struct memp_malloc_helper*)memp_malloc(poolnr);
|
||
|
if (element == NULL) {
|
||
|
/* No need to DEBUGF or ASSERT: This error is already
|
||
|
taken care of in memp.c */
|
||
|
#if MEM_USE_POOLS_TRY_BIGGER_POOL
|
||
|
/** Try a bigger pool if this one is empty! */
|
||
|
if (poolnr < MEMP_POOL_LAST) {
|
||
|
poolnr++;
|
||
|
goto again;
|
||
|
}
|
||
|
#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* save the pool number this element came from */
|
||
|
element->poolnr = poolnr;
|
||
|
/* and return a pointer to the memory directly after the struct memp_malloc_helper */
|
||
|
ret = (u8_t*)element + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Free memory previously allocated by mem_malloc. Loads the pool number
|
||
|
* and calls memp_free with that pool number to put the element back into
|
||
|
* its pool
|
||
|
*
|
||
|
* @param rmem the memory element to free
|
||
|
*/
|
||
|
void
|
||
|
mem_free(void *rmem)
|
||
|
{
|
||
|
struct memp_malloc_helper *hmem;
|
||
|
|
||
|
LWIP_ASSERT("rmem != NULL", (rmem != NULL));
|
||
|
LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
|
||
|
|
||
|
/* get the original struct memp_malloc_helper */
|
||
|
hmem = (struct memp_malloc_helper*)(void*)((u8_t*)rmem - LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper)));
|
||
|
|
||
|
LWIP_ASSERT("hmem != NULL", (hmem != NULL));
|
||
|
LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
|
||
|
LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
|
||
|
|
||
|
/* and put it in the pool we saved earlier */
|
||
|
memp_free(hmem->poolnr, hmem);
|
||
|
}
|
||
|
|
||
|
#else /* MEM_USE_POOLS */
|
||
|
/* lwIP replacement for your libc malloc() */
|
||
|
|
||
|
/**
|
||
|
* The heap is made up as a list of structs of this type.
|
||
|
* This does not have to be aligned since for getting its size,
|
||
|
* we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes.
|
||
|
*/
|
||
|
struct mem {
|
||
|
/** index (-> ram[next]) of the next struct */
|
||
|
mem_size_t next;
|
||
|
/** index (-> ram[prev]) of the previous struct */
|
||
|
mem_size_t prev;
|
||
|
/** 1: this area is used; 0: this area is unused */
|
||
|
u8_t used;
|
||
|
};
|
||
|
|
||
|
/** All allocated blocks will be MIN_SIZE bytes big, at least!
|
||
|
* MIN_SIZE can be overridden to suit your needs. Smaller values save space,
|
||
|
* larger values could prevent too small blocks to fragment the RAM too much. */
|
||
|
#ifndef MIN_SIZE
|
||
|
#define MIN_SIZE 12
|
||
|
#endif /* MIN_SIZE */
|
||
|
/* some alignment macros: we define them here for better source code layout */
|
||
|
#define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
|
||
|
#define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
|
||
|
#define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
|
||
|
|
||
|
/** If you want to relocate the heap to external memory, simply define
|
||
|
* LWIP_RAM_HEAP_POINTER as a void-pointer to that location.
|
||
|
* If so, make sure the memory at that location is big enough (see below on
|
||
|
* how that space is calculated). */
|
||
|
#ifndef LWIP_RAM_HEAP_POINTER
|
||
|
/** the heap. we need one struct mem at the end and some room for alignment */
|
||
|
u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT];
|
||
|
#define LWIP_RAM_HEAP_POINTER ram_heap
|
||
|
#endif /* LWIP_RAM_HEAP_POINTER */
|
||
|
|
||
|
/** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
|
||
|
static u8_t *ram;
|
||
|
/** the last entry, always unused! */
|
||
|
static struct mem *ram_end;
|
||
|
/** pointer to the lowest free block, this is used for faster search */
|
||
|
static struct mem *lfree;
|
||
|
|
||
|
/** concurrent access protection */
|
||
|
#if !NO_SYS
|
||
|
static sys_mutex_t mem_mutex;
|
||
|
#endif
|
||
|
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
|
||
|
static volatile u8_t mem_free_count;
|
||
|
|
||
|
/* Allow mem_free from other (e.g. interrupt) context */
|
||
|
#define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free)
|
||
|
#define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free)
|
||
|
#define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free)
|
||
|
#define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc)
|
||
|
#define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc)
|
||
|
#define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc)
|
||
|
|
||
|
#else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
|
||
|
/* Protect the heap only by using a semaphore */
|
||
|
#define LWIP_MEM_FREE_DECL_PROTECT()
|
||
|
#define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex)
|
||
|
#define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex)
|
||
|
/* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */
|
||
|
#define LWIP_MEM_ALLOC_DECL_PROTECT()
|
||
|
#define LWIP_MEM_ALLOC_PROTECT()
|
||
|
#define LWIP_MEM_ALLOC_UNPROTECT()
|
||
|
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
|
||
|
|
||
|
/**
|
||
|
* "Plug holes" by combining adjacent empty struct mems.
|
||
|
* After this function is through, there should not exist
|
||
|
* one empty struct mem pointing to another empty struct mem.
|
||
|
*
|
||
|
* @param mem this points to a struct mem which just has been freed
|
||
|
* @internal this function is only called by mem_free() and mem_trim()
|
||
|
*
|
||
|
* This assumes access to the heap is protected by the calling function
|
||
|
* already.
|
||
|
*/
|
||
|
static void
|
||
|
plug_holes(struct mem *mem)
|
||
|
{
|
||
|
struct mem *nmem;
|
||
|
struct mem *pmem;
|
||
|
|
||
|
LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
|
||
|
LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
|
||
|
LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
|
||
|
|
||
|
/* plug hole forward */
|
||
|
LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
|
||
|
|
||
|
nmem = (struct mem *)(void *)&ram[mem->next];
|
||
|
if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
|
||
|
/* if mem->next is unused and not end of ram, combine mem and mem->next */
|
||
|
if (lfree == nmem) {
|
||
|
lfree = mem;
|
||
|
}
|
||
|
mem->next = nmem->next;
|
||
|
((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram);
|
||
|
}
|
||
|
|
||
|
/* plug hole backward */
|
||
|
pmem = (struct mem *)(void *)&ram[mem->prev];
|
||
|
if (pmem != mem && pmem->used == 0) {
|
||
|
/* if mem->prev is unused, combine mem and mem->prev */
|
||
|
if (lfree == mem) {
|
||
|
lfree = pmem;
|
||
|
}
|
||
|
pmem->next = mem->next;
|
||
|
((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Zero the heap and initialize start, end and lowest-free
|
||
|
*/
|
||
|
void
|
||
|
mem_init(void)
|
||
|
{
|
||
|
struct mem *mem;
|
||
|
|
||
|
LWIP_ASSERT("Sanity check alignment",
|
||
|
(SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0);
|
||
|
|
||
|
/* align the heap */
|
||
|
ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER);
|
||
|
/* initialize the start of the heap */
|
||
|
mem = (struct mem *)(void *)ram;
|
||
|
mem->next = MEM_SIZE_ALIGNED;
|
||
|
mem->prev = 0;
|
||
|
mem->used = 0;
|
||
|
/* initialize the end of the heap */
|
||
|
ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED];
|
||
|
ram_end->used = 1;
|
||
|
ram_end->next = MEM_SIZE_ALIGNED;
|
||
|
ram_end->prev = MEM_SIZE_ALIGNED;
|
||
|
|
||
|
/* initialize the lowest-free pointer to the start of the heap */
|
||
|
lfree = (struct mem *)(void *)ram;
|
||
|
|
||
|
MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
|
||
|
|
||
|
if(sys_mutex_new(&mem_mutex) != ERR_OK) {
|
||
|
LWIP_ASSERT("failed to create mem_mutex", 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Put a struct mem back on the heap
|
||
|
*
|
||
|
* @param rmem is the data portion of a struct mem as returned by a previous
|
||
|
* call to mem_malloc()
|
||
|
*/
|
||
|
void
|
||
|
mem_free(void *rmem)
|
||
|
{
|
||
|
struct mem *mem;
|
||
|
LWIP_MEM_FREE_DECL_PROTECT();
|
||
|
|
||
|
if (rmem == NULL) {
|
||
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n"));
|
||
|
return;
|
||
|
}
|
||
|
LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0);
|
||
|
|
||
|
LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
|
||
|
(u8_t *)rmem < (u8_t *)ram_end);
|
||
|
|
||
|
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
|
||
|
SYS_ARCH_DECL_PROTECT(lev);
|
||
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n"));
|
||
|
/* protect mem stats from concurrent access */
|
||
|
SYS_ARCH_PROTECT(lev);
|
||
|
MEM_STATS_INC(illegal);
|
||
|
SYS_ARCH_UNPROTECT(lev);
|
||
|
return;
|
||
|
}
|
||
|
/* protect the heap from concurrent access */
|
||
|
LWIP_MEM_FREE_PROTECT();
|
||
|
/* Get the corresponding struct mem ... */
|
||
|
mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
|
||
|
/* ... which has to be in a used state ... */
|
||
|
LWIP_ASSERT("mem_free: mem->used", mem->used);
|
||
|
/* ... and is now unused. */
|
||
|
mem->used = 0;
|
||
|
|
||
|
if (mem < lfree) {
|
||
|
/* the newly freed struct is now the lowest */
|
||
|
lfree = mem;
|
||
|
}
|
||
|
|
||
|
MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram)));
|
||
|
|
||
|
/* finally, see if prev or next are free also */
|
||
|
plug_holes(mem);
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
mem_free_count = 1;
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
LWIP_MEM_FREE_UNPROTECT();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Shrink memory returned by mem_malloc().
|
||
|
*
|
||
|
* @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
|
||
|
* @param newsize required size after shrinking (needs to be smaller than or
|
||
|
* equal to the previous size)
|
||
|
* @return for compatibility reasons: is always == rmem, at the moment
|
||
|
* or NULL if newsize is > old size, in which case rmem is NOT touched
|
||
|
* or freed!
|
||
|
*/
|
||
|
void *
|
||
|
mem_trim(void *rmem, mem_size_t newsize)
|
||
|
{
|
||
|
mem_size_t size;
|
||
|
mem_size_t ptr, ptr2;
|
||
|
struct mem *mem, *mem2;
|
||
|
/* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
|
||
|
LWIP_MEM_FREE_DECL_PROTECT();
|
||
|
|
||
|
/* Expand the size of the allocated memory region so that we can
|
||
|
adjust for alignment. */
|
||
|
newsize = LWIP_MEM_ALIGN_SIZE(newsize);
|
||
|
|
||
|
if(newsize < MIN_SIZE_ALIGNED) {
|
||
|
/* every data block must be at least MIN_SIZE_ALIGNED long */
|
||
|
newsize = MIN_SIZE_ALIGNED;
|
||
|
}
|
||
|
|
||
|
if (newsize > MEM_SIZE_ALIGNED) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
|
||
|
(u8_t *)rmem < (u8_t *)ram_end);
|
||
|
|
||
|
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
|
||
|
SYS_ARCH_DECL_PROTECT(lev);
|
||
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n"));
|
||
|
/* protect mem stats from concurrent access */
|
||
|
SYS_ARCH_PROTECT(lev);
|
||
|
MEM_STATS_INC(illegal);
|
||
|
SYS_ARCH_UNPROTECT(lev);
|
||
|
return rmem;
|
||
|
}
|
||
|
/* Get the corresponding struct mem ... */
|
||
|
mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
|
||
|
/* ... and its offset pointer */
|
||
|
ptr = (mem_size_t)((u8_t *)mem - ram);
|
||
|
|
||
|
size = mem->next - ptr - SIZEOF_STRUCT_MEM;
|
||
|
LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size);
|
||
|
if (newsize > size) {
|
||
|
/* not supported */
|
||
|
return NULL;
|
||
|
}
|
||
|
if (newsize == size) {
|
||
|
/* No change in size, simply return */
|
||
|
return rmem;
|
||
|
}
|
||
|
|
||
|
/* protect the heap from concurrent access */
|
||
|
LWIP_MEM_FREE_PROTECT();
|
||
|
|
||
|
mem2 = (struct mem *)(void *)&ram[mem->next];
|
||
|
if(mem2->used == 0) {
|
||
|
/* The next struct is unused, we can simply move it at little */
|
||
|
mem_size_t next;
|
||
|
/* remember the old next pointer */
|
||
|
next = mem2->next;
|
||
|
/* create new struct mem which is moved directly after the shrinked mem */
|
||
|
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
|
||
|
if (lfree == mem2) {
|
||
|
lfree = (struct mem *)(void *)&ram[ptr2];
|
||
|
}
|
||
|
mem2 = (struct mem *)(void *)&ram[ptr2];
|
||
|
mem2->used = 0;
|
||
|
/* restore the next pointer */
|
||
|
mem2->next = next;
|
||
|
/* link it back to mem */
|
||
|
mem2->prev = ptr;
|
||
|
/* link mem to it */
|
||
|
mem->next = ptr2;
|
||
|
/* last thing to restore linked list: as we have moved mem2,
|
||
|
* let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
|
||
|
* the end of the heap */
|
||
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
||
|
((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
|
||
|
}
|
||
|
MEM_STATS_DEC_USED(used, (size - newsize));
|
||
|
/* no need to plug holes, we've already done that */
|
||
|
} else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
|
||
|
/* Next struct is used but there's room for another struct mem with
|
||
|
* at least MIN_SIZE_ALIGNED of data.
|
||
|
* Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
|
||
|
* ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
|
||
|
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
||
|
* region that couldn't hold data, but when mem->next gets freed,
|
||
|
* the 2 regions would be combined, resulting in more free memory */
|
||
|
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
|
||
|
mem2 = (struct mem *)(void *)&ram[ptr2];
|
||
|
if (mem2 < lfree) {
|
||
|
lfree = mem2;
|
||
|
}
|
||
|
mem2->used = 0;
|
||
|
mem2->next = mem->next;
|
||
|
mem2->prev = ptr;
|
||
|
mem->next = ptr2;
|
||
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
||
|
((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
|
||
|
}
|
||
|
MEM_STATS_DEC_USED(used, (size - newsize));
|
||
|
/* the original mem->next is used, so no need to plug holes! */
|
||
|
}
|
||
|
/* else {
|
||
|
next struct mem is used but size between mem and mem2 is not big enough
|
||
|
to create another struct mem
|
||
|
-> don't do anyhting.
|
||
|
-> the remaining space stays unused since it is too small
|
||
|
} */
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
mem_free_count = 1;
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
LWIP_MEM_FREE_UNPROTECT();
|
||
|
return rmem;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adam's mem_malloc() plus solution for bug #17922
|
||
|
* Allocate a block of memory with a minimum of 'size' bytes.
|
||
|
*
|
||
|
* @param size is the minimum size of the requested block in bytes.
|
||
|
* @return pointer to allocated memory or NULL if no free memory was found.
|
||
|
*
|
||
|
* Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
|
||
|
*/
|
||
|
void *
|
||
|
mem_malloc(mem_size_t size)
|
||
|
{
|
||
|
mem_size_t ptr, ptr2;
|
||
|
struct mem *mem, *mem2;
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
u8_t local_mem_free_count = 0;
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
LWIP_MEM_ALLOC_DECL_PROTECT();
|
||
|
|
||
|
if (size == 0) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Expand the size of the allocated memory region so that we can
|
||
|
adjust for alignment. */
|
||
|
size = LWIP_MEM_ALIGN_SIZE(size);
|
||
|
|
||
|
if(size < MIN_SIZE_ALIGNED) {
|
||
|
/* every data block must be at least MIN_SIZE_ALIGNED long */
|
||
|
size = MIN_SIZE_ALIGNED;
|
||
|
}
|
||
|
|
||
|
if (size > MEM_SIZE_ALIGNED) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* protect the heap from concurrent access */
|
||
|
sys_mutex_lock(&mem_mutex);
|
||
|
LWIP_MEM_ALLOC_PROTECT();
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
/* run as long as a mem_free disturbed mem_malloc or mem_trim */
|
||
|
do {
|
||
|
local_mem_free_count = 0;
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
|
||
|
/* Scan through the heap searching for a free block that is big enough,
|
||
|
* beginning with the lowest free block.
|
||
|
*/
|
||
|
for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size;
|
||
|
ptr = ((struct mem *)(void *)&ram[ptr])->next) {
|
||
|
mem = (struct mem *)(void *)&ram[ptr];
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
mem_free_count = 0;
|
||
|
LWIP_MEM_ALLOC_UNPROTECT();
|
||
|
/* allow mem_free or mem_trim to run */
|
||
|
LWIP_MEM_ALLOC_PROTECT();
|
||
|
if (mem_free_count != 0) {
|
||
|
/* If mem_free or mem_trim have run, we have to restart since they
|
||
|
could have altered our current struct mem. */
|
||
|
local_mem_free_count = 1;
|
||
|
break;
|
||
|
}
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
|
||
|
if ((!mem->used) &&
|
||
|
(mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
|
||
|
/* mem is not used and at least perfect fit is possible:
|
||
|
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
|
||
|
|
||
|
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
|
||
|
/* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
|
||
|
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
|
||
|
* -> split large block, create empty remainder,
|
||
|
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
|
||
|
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
|
||
|
* struct mem would fit in but no data between mem2 and mem2->next
|
||
|
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
||
|
* region that couldn't hold data, but when mem->next gets freed,
|
||
|
* the 2 regions would be combined, resulting in more free memory
|
||
|
*/
|
||
|
ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
|
||
|
/* create mem2 struct */
|
||
|
mem2 = (struct mem *)(void *)&ram[ptr2];
|
||
|
mem2->used = 0;
|
||
|
mem2->next = mem->next;
|
||
|
mem2->prev = ptr;
|
||
|
/* and insert it between mem and mem->next */
|
||
|
mem->next = ptr2;
|
||
|
mem->used = 1;
|
||
|
|
||
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
||
|
((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
|
||
|
}
|
||
|
MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
|
||
|
} else {
|
||
|
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
|
||
|
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
|
||
|
* take care of this).
|
||
|
* -> near fit or excact fit: do not split, no mem2 creation
|
||
|
* also can't move mem->next directly behind mem, since mem->next
|
||
|
* will always be used at this point!
|
||
|
*/
|
||
|
mem->used = 1;
|
||
|
MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram));
|
||
|
}
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
mem_malloc_adjust_lfree:
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
if (mem == lfree) {
|
||
|
struct mem *cur = lfree;
|
||
|
/* Find next free block after mem and update lowest free pointer */
|
||
|
while (cur->used && cur != ram_end) {
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
mem_free_count = 0;
|
||
|
LWIP_MEM_ALLOC_UNPROTECT();
|
||
|
/* prevent high interrupt latency... */
|
||
|
LWIP_MEM_ALLOC_PROTECT();
|
||
|
if (mem_free_count != 0) {
|
||
|
/* If mem_free or mem_trim have run, we have to restart since they
|
||
|
could have altered our current struct mem or lfree. */
|
||
|
goto mem_malloc_adjust_lfree;
|
||
|
}
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
cur = (struct mem *)(void *)&ram[cur->next];
|
||
|
}
|
||
|
lfree = cur;
|
||
|
LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
|
||
|
}
|
||
|
LWIP_MEM_ALLOC_UNPROTECT();
|
||
|
sys_mutex_unlock(&mem_mutex);
|
||
|
LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
|
||
|
(mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
|
||
|
LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
|
||
|
((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
|
||
|
LWIP_ASSERT("mem_malloc: sanity check alignment",
|
||
|
(((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);
|
||
|
|
||
|
return (u8_t *)mem + SIZEOF_STRUCT_MEM;
|
||
|
}
|
||
|
}
|
||
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
||
|
/* if we got interrupted by a mem_free, try again */
|
||
|
} while(local_mem_free_count != 0);
|
||
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
||
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
|
||
|
MEM_STATS_INC(err);
|
||
|
LWIP_MEM_ALLOC_UNPROTECT();
|
||
|
sys_mutex_unlock(&mem_mutex);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
#endif /* MEM_USE_POOLS */
|
||
|
/**
|
||
|
* Contiguously allocates enough space for count objects that are size bytes
|
||
|
* of memory each and returns a pointer to the allocated memory.
|
||
|
*
|
||
|
* The allocated memory is filled with bytes of value zero.
|
||
|
*
|
||
|
* @param count number of objects to allocate
|
||
|
* @param size size of the objects to allocate
|
||
|
* @return pointer to allocated memory / NULL pointer if there is an error
|
||
|
*/
|
||
|
void *mem_calloc(mem_size_t count, mem_size_t size)
|
||
|
{
|
||
|
void *p;
|
||
|
|
||
|
/* allocate 'count' objects of size 'size' */
|
||
|
p = mem_malloc(count * size);
|
||
|
if (p) {
|
||
|
/* zero the memory */
|
||
|
memset(p, 0, count * size);
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
#endif /* !MEM_LIBC_MALLOC */
|