2245 lines
62 KiB
C
2245 lines
62 KiB
C
|
/* This file contains the device dependent part of a driver for the IBM-AT
|
||
|
* winchester controller. Written by Adri Koppes.
|
||
|
*
|
||
|
* Changes:
|
||
|
* Oct 2, 2013 drop non-PCI support; one controller per instance (David)
|
||
|
* Aug 19, 2005 ATA PCI support, supports SATA (Ben Gras)
|
||
|
* Nov 18, 2004 moved AT disk driver to user-space (Jorrit N. Herder)
|
||
|
* Aug 20, 2004 watchdogs replaced by sync alarms (Jorrit N. Herder)
|
||
|
* Mar 23, 2000 added ATAPI CDROM support (Michael Temari)
|
||
|
* May 14, 2000 d-d/i rewrite (Kees J. Bot)
|
||
|
* Apr 13, 1992 device dependent/independent split (Kees J. Bot)
|
||
|
*/
|
||
|
|
||
|
#include "at_wini.h"
|
||
|
|
||
|
#include <minix/sysutil.h>
|
||
|
#include <minix/type.h>
|
||
|
#include <minix/endpoint.h>
|
||
|
#include <sys/ioc_disk.h>
|
||
|
#include <machine/pci.h>
|
||
|
#include <sys/mman.h>
|
||
|
#include <sys/svrctl.h>
|
||
|
|
||
|
/* Variables. */
|
||
|
|
||
|
/* Common command block */
|
||
|
struct command {
|
||
|
u8_t precomp; /* REG_PRECOMP, etc. */
|
||
|
u8_t count;
|
||
|
u8_t sector;
|
||
|
u8_t cyl_lo;
|
||
|
u8_t cyl_hi;
|
||
|
u8_t ldh;
|
||
|
u8_t command;
|
||
|
|
||
|
/* The following at for LBA48 */
|
||
|
u8_t count_prev;
|
||
|
u8_t sector_prev;
|
||
|
u8_t cyl_lo_prev;
|
||
|
u8_t cyl_hi_prev;
|
||
|
};
|
||
|
|
||
|
/* Timeouts and max retries. */
|
||
|
static int timeout_usecs = DEF_TIMEOUT_USECS;
|
||
|
static int max_errors = MAX_ERRORS;
|
||
|
static long w_standard_timeouts = 0;
|
||
|
static long w_pci_debug = 0;
|
||
|
static long w_instance = 0;
|
||
|
static long disable_dma = 0;
|
||
|
static long atapi_debug = 0;
|
||
|
static long w_identify_wakeup_ticks;
|
||
|
static long wakeup_ticks;
|
||
|
static long w_atapi_dma;
|
||
|
|
||
|
static int w_testing = 0;
|
||
|
static int w_silent = 0;
|
||
|
|
||
|
static u32_t system_hz;
|
||
|
|
||
|
/* The struct wini is indexed by drive (0-3). */
|
||
|
static struct wini { /* main drive struct, one entry per drive */
|
||
|
unsigned state; /* drive state: deaf, initialized, dead */
|
||
|
unsigned short w_status; /* device status register */
|
||
|
unsigned base_cmd; /* command base register */
|
||
|
unsigned base_ctl; /* control base register */
|
||
|
unsigned base_dma; /* dma base register */
|
||
|
unsigned char native; /* if set, drive is native (not compat.) */
|
||
|
unsigned char lba48; /* if set, drive supports lba48 */
|
||
|
unsigned char dma; /* if set, drive supports dma */
|
||
|
unsigned char dma_intseen; /* if set, drive has seen an interrupt */
|
||
|
int irq_hook_id; /* id of irq hook at the kernel */
|
||
|
unsigned cylinders; /* physical number of cylinders */
|
||
|
unsigned heads; /* physical number of heads */
|
||
|
unsigned sectors; /* physical number of sectors per track */
|
||
|
unsigned ldhpref; /* top four bytes of the LDH (head) register */
|
||
|
unsigned max_count; /* max request for this drive */
|
||
|
unsigned open_ct; /* in-use count */
|
||
|
struct device part[DEV_PER_DRIVE]; /* disks and partitions */
|
||
|
struct device subpart[SUB_PER_DRIVE]; /* subpartitions */
|
||
|
} wini[MAX_DRIVES], *w_wn;
|
||
|
|
||
|
static int w_device = -1;
|
||
|
|
||
|
int w_command; /* current command in execution */
|
||
|
static int w_drive; /* selected drive */
|
||
|
static struct device *w_dv; /* device's base and size */
|
||
|
|
||
|
static u8_t *tmp_buf;
|
||
|
|
||
|
#define ATA_DMA_SECTORS 64
|
||
|
#define ATA_DMA_BUF_SIZE (ATA_DMA_SECTORS*SECTOR_SIZE)
|
||
|
|
||
|
static char *dma_buf;
|
||
|
static phys_bytes dma_buf_phys;
|
||
|
|
||
|
#define N_PRDTE 1024 /* Should be enough for large requests */
|
||
|
|
||
|
struct prdte
|
||
|
{
|
||
|
phys_bytes prdte_base;
|
||
|
u16_t prdte_count;
|
||
|
u8_t prdte_reserved;
|
||
|
u8_t prdte_flags;
|
||
|
};
|
||
|
|
||
|
#define PRDT_BYTES (sizeof(struct prdte) * N_PRDTE)
|
||
|
static struct prdte *prdt;
|
||
|
static phys_bytes prdt_phys;
|
||
|
|
||
|
#define PRDTE_FL_EOT 0x80 /* End of table */
|
||
|
|
||
|
static int w_probe(int skip, u16_t *vidp, u16_t *didp);
|
||
|
static void w_init(int devind, u16_t vid, u16_t did);
|
||
|
static int init_params(void);
|
||
|
static int w_do_open(devminor_t minor, int access);
|
||
|
static struct device *w_prepare(devminor_t dev);
|
||
|
static struct device *w_part(devminor_t minor);
|
||
|
static int w_identify(void);
|
||
|
static char *w_name(void);
|
||
|
static int w_specify(void);
|
||
|
static int w_io_test(void);
|
||
|
static ssize_t w_transfer(devminor_t minor, int do_write, u64_t position,
|
||
|
endpoint_t proc_nr, iovec_t *iov, unsigned int nr_req, int flags);
|
||
|
static int com_out(struct command *cmd);
|
||
|
static int com_out_ext(struct command *cmd);
|
||
|
static int setup_dma(unsigned *sizep, endpoint_t proc_nr, iovec_t *iov,
|
||
|
size_t addr_offset, int do_write);
|
||
|
static void w_need_reset(void);
|
||
|
static int w_do_close(devminor_t minor);
|
||
|
static int w_ioctl(devminor_t minor, unsigned long request, endpoint_t endpt,
|
||
|
cp_grant_id_t grant, endpoint_t user_endpt);
|
||
|
static void w_hw_int(unsigned int irqs);
|
||
|
static int com_simple(struct command *cmd);
|
||
|
static void w_timeout(void);
|
||
|
static int w_reset(void);
|
||
|
static void w_intr_wait(void);
|
||
|
static int at_intr_wait(void);
|
||
|
static int w_waitfor(int mask, int value);
|
||
|
static int w_waitfor_dma(unsigned int mask, unsigned int value);
|
||
|
static void w_geometry(devminor_t minor, struct part_geom *entry);
|
||
|
static int atapi_sendpacket(u8_t *packet, unsigned cnt, int do_dma);
|
||
|
static int atapi_intr_wait(int dma, size_t max);
|
||
|
static int atapi_open(void);
|
||
|
static void atapi_close(void);
|
||
|
static int atapi_transfer(int do_write, u64_t position, endpoint_t
|
||
|
endpt, iovec_t *iov, unsigned int nr_req);
|
||
|
|
||
|
/* Entry points to this driver. */
|
||
|
static struct blockdriver w_dtab = {
|
||
|
.bdr_type = BLOCKDRIVER_TYPE_DISK, /* handle partition requests */
|
||
|
.bdr_open = w_do_open, /* open or mount request, initialize device */
|
||
|
.bdr_close = w_do_close, /* release device */
|
||
|
.bdr_transfer = w_transfer, /* do the I/O */
|
||
|
.bdr_ioctl = w_ioctl, /* I/O control requests */
|
||
|
.bdr_part = w_part, /* return partition information */
|
||
|
.bdr_geometry = w_geometry, /* tell the geometry of the disk */
|
||
|
.bdr_intr = w_hw_int, /* leftover hardware interrupts */
|
||
|
};
|
||
|
|
||
|
/* SEF functions and variables. */
|
||
|
static void sef_local_startup(void);
|
||
|
static int sef_cb_init_fresh(int type, sef_init_info_t *info);
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* at_winchester_task *
|
||
|
*===========================================================================*/
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
/* SEF local startup. */
|
||
|
env_setargs(argc, argv);
|
||
|
sef_local_startup();
|
||
|
|
||
|
/* Call the generic receive loop. */
|
||
|
blockdriver_task(&w_dtab);
|
||
|
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* sef_local_startup *
|
||
|
*===========================================================================*/
|
||
|
static void sef_local_startup(void)
|
||
|
{
|
||
|
/* Register init callbacks. */
|
||
|
sef_setcb_init_fresh(sef_cb_init_fresh);
|
||
|
sef_setcb_init_lu(sef_cb_init_fresh);
|
||
|
|
||
|
/* Register live update callbacks. */
|
||
|
sef_setcb_lu_prepare(sef_cb_lu_prepare);
|
||
|
sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid);
|
||
|
sef_setcb_lu_state_dump(sef_cb_lu_state_dump);
|
||
|
|
||
|
/* Let SEF perform startup. */
|
||
|
sef_startup();
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* sef_cb_init_fresh *
|
||
|
*===========================================================================*/
|
||
|
static int sef_cb_init_fresh(int type, sef_init_info_t *UNUSED(info))
|
||
|
{
|
||
|
/* Initialize the at_wini driver. */
|
||
|
int skip, devind;
|
||
|
u16_t vid, did;
|
||
|
|
||
|
system_hz = sys_hz();
|
||
|
|
||
|
if (!(tmp_buf = alloc_contig(2*DMA_BUF_SIZE, AC_ALIGN4K, NULL)))
|
||
|
panic("unable to allocate temporary buffer");
|
||
|
|
||
|
w_identify_wakeup_ticks = WAKEUP_TICKS;
|
||
|
wakeup_ticks = WAKEUP_TICKS;
|
||
|
|
||
|
/* Set special disk parameters. */
|
||
|
skip = init_params();
|
||
|
|
||
|
/* Find the PCI device to use. If none found, terminate immediately. */
|
||
|
devind = w_probe(skip, &vid, &did);
|
||
|
if (devind < 0) {
|
||
|
/* For now, complain only if even the first at_wini instance cannot
|
||
|
* find a device. There may be only one IDE controller after all,
|
||
|
* but if there are none, the system should probably be booted with
|
||
|
* another driver, and that's something the user might want to know.
|
||
|
*/
|
||
|
if (w_instance == 0)
|
||
|
panic("no matching device found");
|
||
|
return ENODEV; /* the actual error code doesn't matter */
|
||
|
}
|
||
|
|
||
|
/* Initialize the device. */
|
||
|
w_init(devind, vid, did);
|
||
|
|
||
|
/* Announce we are up! */
|
||
|
blockdriver_announce(type);
|
||
|
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* init_params *
|
||
|
*===========================================================================*/
|
||
|
static int init_params(void)
|
||
|
{
|
||
|
/* This routine is called at startup to initialize the drive parameters. */
|
||
|
int drive;
|
||
|
long wakeup_secs = WAKEUP_SECS;
|
||
|
|
||
|
/* Boot variables. */
|
||
|
env_parse("instance", "d", 0, &w_instance, 0, 8);
|
||
|
env_parse("ata_std_timeout", "d", 0, &w_standard_timeouts, 0, 1);
|
||
|
env_parse("ata_pci_debug", "d", 0, &w_pci_debug, 0, 1);
|
||
|
env_parse(NO_DMA_VAR, "d", 0, &disable_dma, 0, 1);
|
||
|
env_parse("ata_id_timeout", "d", 0, &wakeup_secs, 1, 60);
|
||
|
env_parse("atapi_debug", "d", 0, &atapi_debug, 0, 1);
|
||
|
env_parse("atapi_dma", "d", 0, &w_atapi_dma, 0, 1);
|
||
|
|
||
|
w_identify_wakeup_ticks = wakeup_secs * system_hz;
|
||
|
|
||
|
if(atapi_debug)
|
||
|
panic("atapi_debug");
|
||
|
|
||
|
if(w_identify_wakeup_ticks <= 0) {
|
||
|
printf("changing wakeup from %ld to %d ticks.\n",
|
||
|
w_identify_wakeup_ticks, WAKEUP_TICKS);
|
||
|
w_identify_wakeup_ticks = WAKEUP_TICKS;
|
||
|
}
|
||
|
|
||
|
if (disable_dma) {
|
||
|
printf("at_wini%ld: DMA for ATA devices is disabled.\n", w_instance);
|
||
|
} else {
|
||
|
/* Ask for anonymous memory for DMA, that is physically contiguous. */
|
||
|
dma_buf = alloc_contig(ATA_DMA_BUF_SIZE, 0, &dma_buf_phys);
|
||
|
prdt = alloc_contig(PRDT_BYTES, 0, &prdt_phys);
|
||
|
if(!dma_buf || !prdt) {
|
||
|
disable_dma = 1;
|
||
|
printf("at_wini%ld: no dma\n", w_instance);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (drive = 0; drive < MAX_DRIVES; drive++)
|
||
|
wini[drive].state = IGNORING;
|
||
|
|
||
|
return (int) w_instance;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* init_drive *
|
||
|
*===========================================================================*/
|
||
|
static void init_drive(int drive, int base_cmd, int base_ctl, int base_dma,
|
||
|
int native, int hook)
|
||
|
{
|
||
|
struct wini *w;
|
||
|
|
||
|
w = &wini[drive];
|
||
|
|
||
|
w->state = 0;
|
||
|
w->w_status = 0;
|
||
|
w->base_cmd = base_cmd;
|
||
|
w->base_ctl = base_ctl;
|
||
|
w->base_dma = base_dma;
|
||
|
if (w_pci_debug)
|
||
|
printf("at_wini%ld: drive %d: base_cmd 0x%x, base_ctl 0x%x, "
|
||
|
"base_dma 0x%x\n", w_instance, drive, w->base_cmd, w->base_ctl,
|
||
|
w->base_dma);
|
||
|
w->native = native;
|
||
|
w->irq_hook_id = hook;
|
||
|
w->ldhpref = ldh_init(drive);
|
||
|
w->max_count = MAX_SECS << SECTOR_SHIFT;
|
||
|
w->lba48 = 0;
|
||
|
w->dma = 0;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_probe *
|
||
|
*===========================================================================*/
|
||
|
static int w_probe(int skip, u16_t *vidp, u16_t *didp)
|
||
|
{
|
||
|
/* Go through the PCI devices that have been made visible to us, skipping as
|
||
|
* many as requested and then reserving the first one after that. We assume
|
||
|
* that all visible devices are in fact devices we can handle.
|
||
|
*/
|
||
|
int r, devind;
|
||
|
|
||
|
pci_init();
|
||
|
|
||
|
r = pci_first_dev(&devind, vidp, didp);
|
||
|
if (r <= 0)
|
||
|
return -1;
|
||
|
|
||
|
while (skip--) {
|
||
|
r = pci_next_dev(&devind, vidp, didp);
|
||
|
if (r <= 0)
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
pci_reserve(devind);
|
||
|
|
||
|
return devind;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_init *
|
||
|
*===========================================================================*/
|
||
|
static void w_init(int devind, u16_t vid, u16_t did)
|
||
|
{
|
||
|
/* Initialize drives on the controller that we found and reserved. Each
|
||
|
* controller has two channels, each of which may have up to two disks
|
||
|
* attached, so the maximum number of disks per controller is always four.
|
||
|
* In this function, we always initialize the slots for all four disks; later,
|
||
|
* during normal operation, we determine whether the disks are actually there.
|
||
|
* For pure IDE devices (as opposed to e.g. RAID devices), each of the two
|
||
|
* channels on the controller may be in native or compatibility mode. The PCI
|
||
|
* interface field tells us which channel is in which mode. For native
|
||
|
* channels, we get the IRQ and the channel's base control and command
|
||
|
* addresses from the PCI slot, and we manually acknowledge interrupts. For
|
||
|
* compatibility channels, we use the hardcoded legacy IRQs and addresses, and
|
||
|
* enable automatic IRQ reenabling. In both cases, we get the base DMA address
|
||
|
* from the PCI slot if it is there.
|
||
|
*/
|
||
|
int r, irq, native_hook, compat_hook, is_ide, nhooks;
|
||
|
u8_t bcr, scr, interface;
|
||
|
u16_t cr;
|
||
|
u32_t base_cmd, base_ctl, base_dma;
|
||
|
|
||
|
bcr= pci_attr_r8(devind, PCI_BCR);
|
||
|
scr= pci_attr_r8(devind, PCI_SCR);
|
||
|
interface= pci_attr_r8(devind, PCI_PIFR);
|
||
|
|
||
|
is_ide = (bcr == PCI_BCR_MASS_STORAGE && scr == PCI_MS_IDE);
|
||
|
|
||
|
irq = pci_attr_r8(devind, PCI_ILR);
|
||
|
base_dma = pci_attr_r32(devind, PCI_BAR_5) & PCI_BAR_IO_MASK;
|
||
|
|
||
|
nhooks = 0; /* we don't care about notify IDs, but they must be unique */
|
||
|
|
||
|
/* Any native drives? Then register their native IRQ first. */
|
||
|
if (!is_ide || (interface & (ATA_IF_NATIVE0 | ATA_IF_NATIVE1))) {
|
||
|
native_hook = nhooks++;
|
||
|
if ((r = sys_irqsetpolicy(irq, 0, &native_hook)) != OK)
|
||
|
panic("couldn't set native IRQ policy %d: %d", irq, r);
|
||
|
if ((r = sys_irqenable(&native_hook)) != OK)
|
||
|
panic("couldn't enable native IRQ line %d: %d", irq, r);
|
||
|
}
|
||
|
|
||
|
/* Add drives on the primary channel. */
|
||
|
if (!is_ide || (interface & ATA_IF_NATIVE0)) {
|
||
|
base_cmd = pci_attr_r32(devind, PCI_BAR) & PCI_BAR_IO_MASK;
|
||
|
base_ctl = pci_attr_r32(devind, PCI_BAR_2) & PCI_BAR_IO_MASK;
|
||
|
|
||
|
init_drive(0, base_cmd, base_ctl+PCI_CTL_OFF, base_dma, TRUE,
|
||
|
native_hook);
|
||
|
init_drive(1, base_cmd, base_ctl+PCI_CTL_OFF, base_dma, TRUE,
|
||
|
native_hook);
|
||
|
|
||
|
if (w_pci_debug)
|
||
|
printf("at_wini%ld: native 0 on %d: 0x%x 0x%x irq %d\n",
|
||
|
w_instance, devind, base_cmd, base_ctl, irq);
|
||
|
} else {
|
||
|
/* Register first compatibility IRQ. */
|
||
|
compat_hook = nhooks++;
|
||
|
if ((r = sys_irqsetpolicy(AT_WINI_0_IRQ, IRQ_REENABLE,
|
||
|
&compat_hook)) != OK)
|
||
|
panic("couldn't set compat(0) IRQ policy: %d", r);
|
||
|
if ((r = sys_irqenable(&compat_hook)) != OK)
|
||
|
panic("couldn't enable compat(0) IRQ line: %d", r);
|
||
|
|
||
|
init_drive(0, REG_CMD_BASE0, REG_CTL_BASE0, base_dma, FALSE,
|
||
|
compat_hook);
|
||
|
init_drive(1, REG_CMD_BASE0, REG_CTL_BASE0, base_dma, FALSE,
|
||
|
compat_hook);
|
||
|
|
||
|
if (w_pci_debug)
|
||
|
printf("at_wini%ld: compat 0 on %d\n", w_instance, devind);
|
||
|
}
|
||
|
|
||
|
/* Add drives on the secondary channel. */
|
||
|
if (base_dma != 0)
|
||
|
base_dma += PCI_DMA_2ND_OFF;
|
||
|
if (!is_ide || (interface & ATA_IF_NATIVE1)) {
|
||
|
base_cmd = pci_attr_r32(devind, PCI_BAR_3) & PCI_BAR_IO_MASK;
|
||
|
base_ctl = pci_attr_r32(devind, PCI_BAR_4) & PCI_BAR_IO_MASK;
|
||
|
init_drive(2, base_cmd, base_ctl+PCI_CTL_OFF, base_dma, TRUE,
|
||
|
native_hook);
|
||
|
init_drive(3, base_cmd, base_ctl+PCI_CTL_OFF, base_dma, TRUE,
|
||
|
native_hook);
|
||
|
if (w_pci_debug)
|
||
|
printf("at_wini%ld: native 1 on %d: 0x%x 0x%x irq %d\n",
|
||
|
w_instance, devind, base_cmd, base_ctl, irq);
|
||
|
} else {
|
||
|
/* Register secondary compatibility IRQ. */
|
||
|
compat_hook = nhooks++;
|
||
|
if ((r = sys_irqsetpolicy(AT_WINI_1_IRQ, IRQ_REENABLE,
|
||
|
&compat_hook)) != OK)
|
||
|
panic("couldn't set compat(1) IRQ policy: %d", r);
|
||
|
if ((r = sys_irqenable(&compat_hook)) != OK)
|
||
|
panic("couldn't enable compat(1) IRQ line: %d", r);
|
||
|
|
||
|
init_drive(2, REG_CMD_BASE1, REG_CTL_BASE1, base_dma, FALSE,
|
||
|
compat_hook);
|
||
|
init_drive(3, REG_CMD_BASE1, REG_CTL_BASE1, base_dma, FALSE,
|
||
|
compat_hook);
|
||
|
|
||
|
if (w_pci_debug)
|
||
|
printf("at_wini%ld: compat 1 on %d\n", w_instance, devind);
|
||
|
}
|
||
|
|
||
|
/* Enable busmastering if necessary. */
|
||
|
cr = pci_attr_r16(devind, PCI_CR);
|
||
|
if (!(cr & PCI_CR_MAST_EN))
|
||
|
pci_attr_w16(devind, PCI_CR, cr | PCI_CR_MAST_EN);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_do_open *
|
||
|
*===========================================================================*/
|
||
|
static int w_do_open(devminor_t minor, int access)
|
||
|
{
|
||
|
/* Device open: Initialize the controller and read the partition table. */
|
||
|
|
||
|
struct wini *wn;
|
||
|
|
||
|
if (w_prepare(minor) == NULL) return(ENXIO);
|
||
|
|
||
|
wn = w_wn;
|
||
|
|
||
|
/* If we've probed it before and it failed, don't probe it again. */
|
||
|
if (wn->state & IGNORING) return ENXIO;
|
||
|
|
||
|
/* If we haven't identified it yet, or it's gone deaf,
|
||
|
* (re-)identify it.
|
||
|
*/
|
||
|
if (!(wn->state & IDENTIFIED) || (wn->state & DEAF)) {
|
||
|
/* Try to identify the device. */
|
||
|
if (w_identify() != OK) {
|
||
|
#if VERBOSE
|
||
|
printf("%s: identification failed\n", w_name());
|
||
|
#endif
|
||
|
if (wn->state & DEAF){
|
||
|
int err = w_reset();
|
||
|
if( err != OK ){
|
||
|
return err;
|
||
|
}
|
||
|
}
|
||
|
wn->state = IGNORING;
|
||
|
return(ENXIO);
|
||
|
}
|
||
|
/* Do a test transaction unless it's a CD drive (then
|
||
|
* we can believe the controller, and a test may fail
|
||
|
* due to no CD being in the drive). If it fails, ignore
|
||
|
* the device forever.
|
||
|
*/
|
||
|
if (!(wn->state & ATAPI) && w_io_test() != OK) {
|
||
|
wn->state |= IGNORING;
|
||
|
return(ENXIO);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((wn->state & ATAPI) && (access & BDEV_W_BIT))
|
||
|
return(EACCES);
|
||
|
|
||
|
/* Partition the drive if it's being opened for the first time,
|
||
|
* or being opened after being closed.
|
||
|
*/
|
||
|
if (wn->open_ct == 0) {
|
||
|
if (wn->state & ATAPI) {
|
||
|
int r;
|
||
|
if ((r = atapi_open()) != OK) return(r);
|
||
|
}
|
||
|
|
||
|
/* Partition the disk. */
|
||
|
partition(&w_dtab, w_drive * DEV_PER_DRIVE, P_PRIMARY,
|
||
|
wn->state & ATAPI);
|
||
|
}
|
||
|
wn->open_ct++;
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_prepare *
|
||
|
*===========================================================================*/
|
||
|
static struct device *w_prepare(devminor_t device)
|
||
|
{
|
||
|
/* Prepare for I/O on a device. */
|
||
|
w_device = (int) device;
|
||
|
|
||
|
if (device >= 0 && device < NR_MINORS) { /* d0, d0p[0-3], d1, ... */
|
||
|
w_drive = device / DEV_PER_DRIVE; /* save drive number */
|
||
|
if (w_drive >= MAX_DRIVES) return(NULL);
|
||
|
w_wn = &wini[w_drive];
|
||
|
w_dv = &w_wn->part[device % DEV_PER_DRIVE];
|
||
|
} else
|
||
|
if ((unsigned) (device -= MINOR_d0p0s0) < NR_SUBDEVS) {/*d[0-7]p[0-3]s[0-3]*/
|
||
|
w_drive = device / SUB_PER_DRIVE;
|
||
|
if (w_drive >= MAX_DRIVES) return(NULL);
|
||
|
w_wn = &wini[w_drive];
|
||
|
w_dv = &w_wn->subpart[device % SUB_PER_DRIVE];
|
||
|
} else {
|
||
|
w_device = -1;
|
||
|
return(NULL);
|
||
|
}
|
||
|
return(w_dv);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_part *
|
||
|
*===========================================================================*/
|
||
|
static struct device *w_part(devminor_t device)
|
||
|
{
|
||
|
/* Return a pointer to the partition information of the given minor device. */
|
||
|
|
||
|
return w_prepare(device);
|
||
|
}
|
||
|
|
||
|
#define id_byte(n) (&tmp_buf[2 * (n)])
|
||
|
#define id_word(n) (((u16_t) id_byte(n)[0] << 0) \
|
||
|
|((u16_t) id_byte(n)[1] << 8))
|
||
|
#define id_longword(n) (((u32_t) id_byte(n)[0] << 0) \
|
||
|
|((u32_t) id_byte(n)[1] << 8) \
|
||
|
|((u32_t) id_byte(n)[2] << 16) \
|
||
|
|((u32_t) id_byte(n)[3] << 24))
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* check_dma *
|
||
|
*===========================================================================*/
|
||
|
static void
|
||
|
check_dma(struct wini *wn)
|
||
|
{
|
||
|
u32_t dma_status, dma_base;
|
||
|
int id_dma, ultra_dma;
|
||
|
u16_t w;
|
||
|
|
||
|
wn->dma= 0;
|
||
|
|
||
|
if (disable_dma)
|
||
|
return;
|
||
|
|
||
|
w= id_word(ID_CAPABILITIES);
|
||
|
id_dma= !!(w & ID_CAP_DMA);
|
||
|
w= id_byte(ID_FIELD_VALIDITY)[0];
|
||
|
ultra_dma= !!(w & ID_FV_88);
|
||
|
dma_base= wn->base_dma;
|
||
|
|
||
|
if (dma_base) {
|
||
|
if (sys_inb(dma_base + DMA_STATUS, &dma_status) != OK) {
|
||
|
panic("unable to read DMA status register");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (id_dma && dma_base) {
|
||
|
w= id_word(ID_MULTIWORD_DMA);
|
||
|
if (w_pci_debug &&
|
||
|
(w & (ID_MWDMA_2_SUP|ID_MWDMA_1_SUP|ID_MWDMA_0_SUP))) {
|
||
|
printf(
|
||
|
"%s: multiword DMA modes supported:%s%s%s\n",
|
||
|
w_name(),
|
||
|
(w & ID_MWDMA_0_SUP) ? " 0" : "",
|
||
|
(w & ID_MWDMA_1_SUP) ? " 1" : "",
|
||
|
(w & ID_MWDMA_2_SUP) ? " 2" : "");
|
||
|
}
|
||
|
if (w_pci_debug &&
|
||
|
(w & (ID_MWDMA_0_SEL|ID_MWDMA_1_SEL|ID_MWDMA_2_SEL))) {
|
||
|
printf(
|
||
|
"%s: multiword DMA mode selected:%s%s%s\n",
|
||
|
w_name(),
|
||
|
(w & ID_MWDMA_0_SEL) ? " 0" : "",
|
||
|
(w & ID_MWDMA_1_SEL) ? " 1" : "",
|
||
|
(w & ID_MWDMA_2_SEL) ? " 2" : "");
|
||
|
}
|
||
|
if (w_pci_debug && ultra_dma) {
|
||
|
w= id_word(ID_ULTRA_DMA);
|
||
|
if (w & (ID_UDMA_0_SUP|ID_UDMA_1_SUP|
|
||
|
ID_UDMA_2_SUP|ID_UDMA_3_SUP|
|
||
|
ID_UDMA_4_SUP|ID_UDMA_5_SUP)) {
|
||
|
printf(
|
||
|
"%s: Ultra DMA modes supported:%s%s%s%s%s%s\n",
|
||
|
w_name(),
|
||
|
(w & ID_UDMA_0_SUP) ? " 0" : "",
|
||
|
(w & ID_UDMA_1_SUP) ? " 1" : "",
|
||
|
(w & ID_UDMA_2_SUP) ? " 2" : "",
|
||
|
(w & ID_UDMA_3_SUP) ? " 3" : "",
|
||
|
(w & ID_UDMA_4_SUP) ? " 4" : "",
|
||
|
(w & ID_UDMA_5_SUP) ? " 5" : "");
|
||
|
}
|
||
|
if (w & (ID_UDMA_0_SEL|ID_UDMA_1_SEL|
|
||
|
ID_UDMA_2_SEL|ID_UDMA_3_SEL|
|
||
|
ID_UDMA_4_SEL|ID_UDMA_5_SEL)) {
|
||
|
printf(
|
||
|
"%s: Ultra DMA mode selected:%s%s%s%s%s%s\n",
|
||
|
w_name(),
|
||
|
(w & ID_UDMA_0_SEL) ? " 0" : "",
|
||
|
(w & ID_UDMA_1_SEL) ? " 1" : "",
|
||
|
(w & ID_UDMA_2_SEL) ? " 2" : "",
|
||
|
(w & ID_UDMA_3_SEL) ? " 3" : "",
|
||
|
(w & ID_UDMA_4_SEL) ? " 4" : "",
|
||
|
(w & ID_UDMA_5_SEL) ? " 5" : "");
|
||
|
}
|
||
|
}
|
||
|
wn->dma= 1;
|
||
|
} else if (id_dma || dma_base) {
|
||
|
printf("id_dma %d, dma_base 0x%x\n", id_dma, dma_base);
|
||
|
} else
|
||
|
printf("no DMA support\n");
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_identify *
|
||
|
*===========================================================================*/
|
||
|
static int w_identify(void)
|
||
|
{
|
||
|
/* Find out if a device exists, if it is an old AT disk, or a newer ATA
|
||
|
* drive, a removable media device, etc.
|
||
|
*/
|
||
|
|
||
|
struct wini *wn = w_wn;
|
||
|
struct command cmd;
|
||
|
int s;
|
||
|
u16_t w;
|
||
|
unsigned long size;
|
||
|
int prev_wakeup;
|
||
|
int r;
|
||
|
|
||
|
/* Try to identify the device. */
|
||
|
cmd.ldh = wn->ldhpref;
|
||
|
cmd.command = ATA_IDENTIFY;
|
||
|
|
||
|
/* In testing mode, a drive will get ignored at the first timeout. */
|
||
|
w_testing = 1;
|
||
|
|
||
|
/* Execute *_IDENTIFY with configured *_IDENTIFY timeout. */
|
||
|
prev_wakeup = wakeup_ticks;
|
||
|
wakeup_ticks = w_identify_wakeup_ticks;
|
||
|
r = com_simple(&cmd);
|
||
|
|
||
|
if (r == OK && w_waitfor(STATUS_DRQ, STATUS_DRQ) &&
|
||
|
!(wn->w_status & (STATUS_ERR|STATUS_WF))) {
|
||
|
|
||
|
/* Device information. */
|
||
|
if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, SECTOR_SIZE)) != OK)
|
||
|
panic("Call to sys_insw() failed: %d", s);
|
||
|
|
||
|
/* This is an ATA device. */
|
||
|
wn->state |= SMART;
|
||
|
|
||
|
/* Preferred CHS translation mode. */
|
||
|
wn->cylinders = id_word(1);
|
||
|
wn->heads = id_word(3);
|
||
|
wn->sectors = id_word(6);
|
||
|
size = (u32_t) wn->cylinders * wn->heads * wn->sectors;
|
||
|
|
||
|
w= id_word(ID_CAPABILITIES);
|
||
|
if ((w & ID_CAP_LBA) && size > 512L*1024*2) {
|
||
|
/* Drive is LBA capable and is big enough to trust it to
|
||
|
* not make a mess of it.
|
||
|
*/
|
||
|
wn->ldhpref |= LDH_LBA;
|
||
|
size = id_longword(60);
|
||
|
|
||
|
w= id_word(ID_CSS);
|
||
|
if (size < LBA48_CHECK_SIZE)
|
||
|
{
|
||
|
/* No need to check for LBA48 */
|
||
|
}
|
||
|
else if (w & ID_CSS_LBA48) {
|
||
|
/* Drive is LBA48 capable (and LBA48 is turned on). */
|
||
|
if (id_longword(102)) {
|
||
|
/* If no. of sectors doesn't fit in 32 bits,
|
||
|
* trunacte to this. So it's LBA32 for now.
|
||
|
* This can still address devices up to 2TB
|
||
|
* though.
|
||
|
*/
|
||
|
size = ULONG_MAX;
|
||
|
} else {
|
||
|
/* Actual number of sectors fits in 32 bits. */
|
||
|
size = id_longword(100);
|
||
|
}
|
||
|
wn->lba48 = 1;
|
||
|
}
|
||
|
|
||
|
check_dma(wn);
|
||
|
}
|
||
|
} else if (cmd.command = ATAPI_IDENTIFY,
|
||
|
com_simple(&cmd) == OK && w_waitfor(STATUS_DRQ, STATUS_DRQ) &&
|
||
|
!(wn->w_status & (STATUS_ERR|STATUS_WF))) {
|
||
|
/* An ATAPI device. */
|
||
|
wn->state |= ATAPI;
|
||
|
|
||
|
/* Device information. */
|
||
|
if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, 512)) != OK)
|
||
|
panic("Call to sys_insw() failed: %d", s);
|
||
|
|
||
|
size = 0; /* Size set later. */
|
||
|
check_dma(wn);
|
||
|
} else {
|
||
|
/* Not an ATA device; no translations, no special features. Don't
|
||
|
* touch it.
|
||
|
*/
|
||
|
wakeup_ticks = prev_wakeup;
|
||
|
w_testing = 0;
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
/* Restore wakeup_ticks and unset testing mode. */
|
||
|
wakeup_ticks = prev_wakeup;
|
||
|
w_testing = 0;
|
||
|
|
||
|
/* Size of the whole drive */
|
||
|
wn->part[0].dv_size = (u64_t)size * SECTOR_SIZE;
|
||
|
|
||
|
/* Reset/calibrate (where necessary) */
|
||
|
if (w_specify() != OK && w_specify() != OK) {
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
wn->state |= IDENTIFIED;
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_name *
|
||
|
*===========================================================================*/
|
||
|
static char *w_name(void)
|
||
|
{
|
||
|
/* Return a name for the current device. */
|
||
|
static char name[] = "AT0-D0";
|
||
|
|
||
|
name[2] = '0' + w_instance;
|
||
|
name[5] = '0' + w_drive;
|
||
|
return name;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_io_test *
|
||
|
*===========================================================================*/
|
||
|
static int w_io_test(void)
|
||
|
{
|
||
|
int save_dev;
|
||
|
int save_timeout, save_errors, save_wakeup;
|
||
|
iovec_t iov;
|
||
|
static char *buf;
|
||
|
ssize_t r;
|
||
|
|
||
|
#define BUFSIZE CD_SECTOR_SIZE
|
||
|
STATICINIT(buf, BUFSIZE);
|
||
|
|
||
|
iov.iov_addr = (vir_bytes) buf;
|
||
|
iov.iov_size = BUFSIZE;
|
||
|
save_dev = w_device;
|
||
|
|
||
|
/* Reduce timeout values for this test transaction. */
|
||
|
save_timeout = timeout_usecs;
|
||
|
save_errors = max_errors;
|
||
|
save_wakeup = wakeup_ticks;
|
||
|
|
||
|
if (!w_standard_timeouts) {
|
||
|
timeout_usecs = 4000000;
|
||
|
wakeup_ticks = system_hz * 6;
|
||
|
max_errors = 3;
|
||
|
}
|
||
|
|
||
|
w_testing = 1;
|
||
|
|
||
|
/* Try I/O on the actual drive (not any (sub)partition). */
|
||
|
r = w_transfer(w_drive * DEV_PER_DRIVE, FALSE /*do_write*/, 0,
|
||
|
SELF, &iov, 1, BDEV_NOFLAGS);
|
||
|
|
||
|
/* Switch back. */
|
||
|
if (w_prepare(save_dev) == NULL)
|
||
|
panic("Couldn't switch back devices");
|
||
|
|
||
|
/* Restore parameters. */
|
||
|
timeout_usecs = save_timeout;
|
||
|
max_errors = save_errors;
|
||
|
wakeup_ticks = save_wakeup;
|
||
|
w_testing = 0;
|
||
|
|
||
|
/* Test if everything worked. */
|
||
|
if (r != BUFSIZE) {
|
||
|
return ERR;
|
||
|
}
|
||
|
|
||
|
/* Everything worked. */
|
||
|
return OK;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_specify *
|
||
|
*===========================================================================*/
|
||
|
static int w_specify(void)
|
||
|
{
|
||
|
/* Routine to initialize the drive after boot or when a reset is needed. */
|
||
|
|
||
|
struct wini *wn = w_wn;
|
||
|
struct command cmd;
|
||
|
|
||
|
if ((wn->state & DEAF) && w_reset() != OK) {
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
if (!(wn->state & ATAPI)) {
|
||
|
/* Specify parameters: precompensation, number of heads and sectors. */
|
||
|
cmd.precomp = 0;
|
||
|
cmd.count = wn->sectors;
|
||
|
cmd.ldh = w_wn->ldhpref | (wn->heads - 1);
|
||
|
cmd.command = CMD_SPECIFY; /* Specify some parameters */
|
||
|
|
||
|
/* Output command block and see if controller accepts the parameters. */
|
||
|
if (com_simple(&cmd) != OK) return(ERR);
|
||
|
|
||
|
if (!(wn->state & SMART)) {
|
||
|
/* Calibrate an old disk. */
|
||
|
cmd.sector = 0;
|
||
|
cmd.cyl_lo = 0;
|
||
|
cmd.cyl_hi = 0;
|
||
|
cmd.ldh = w_wn->ldhpref;
|
||
|
cmd.command = CMD_RECALIBRATE;
|
||
|
|
||
|
if (com_simple(&cmd) != OK) return(ERR);
|
||
|
}
|
||
|
}
|
||
|
wn->state |= INITIALIZED;
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* do_transfer *
|
||
|
*===========================================================================*/
|
||
|
static int do_transfer(const struct wini *wn, unsigned int count,
|
||
|
unsigned int sector, unsigned int do_write, int do_dma)
|
||
|
{
|
||
|
struct command cmd;
|
||
|
unsigned int sector_high;
|
||
|
unsigned secspcyl = wn->heads * wn->sectors;
|
||
|
int do_lba48;
|
||
|
|
||
|
sector_high= 0; /* For future extensions */
|
||
|
|
||
|
do_lba48= 0;
|
||
|
if (sector >= LBA48_CHECK_SIZE || sector_high != 0)
|
||
|
{
|
||
|
if (wn->lba48)
|
||
|
do_lba48= 1;
|
||
|
else if (sector > LBA_MAX_SIZE || sector_high != 0)
|
||
|
{
|
||
|
/* Strange sector count for LBA device */
|
||
|
return EIO;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cmd.precomp = 0;
|
||
|
cmd.count = count;
|
||
|
if (do_dma)
|
||
|
{
|
||
|
cmd.command = do_write ? CMD_WRITE_DMA : CMD_READ_DMA;
|
||
|
}
|
||
|
else
|
||
|
cmd.command = do_write ? CMD_WRITE : CMD_READ;
|
||
|
|
||
|
if (do_lba48) {
|
||
|
if (do_dma)
|
||
|
{
|
||
|
cmd.command = (do_write ?
|
||
|
CMD_WRITE_DMA_EXT : CMD_READ_DMA_EXT);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cmd.command = (do_write ?
|
||
|
CMD_WRITE_EXT : CMD_READ_EXT);
|
||
|
}
|
||
|
cmd.count_prev= (count >> 8);
|
||
|
cmd.sector = (sector >> 0) & 0xFF;
|
||
|
cmd.cyl_lo = (sector >> 8) & 0xFF;
|
||
|
cmd.cyl_hi = (sector >> 16) & 0xFF;
|
||
|
cmd.sector_prev= (sector >> 24) & 0xFF;
|
||
|
cmd.cyl_lo_prev= (sector_high) & 0xFF;
|
||
|
cmd.cyl_hi_prev= (sector_high >> 8) & 0xFF;
|
||
|
cmd.ldh = wn->ldhpref;
|
||
|
|
||
|
return com_out_ext(&cmd);
|
||
|
} else if (wn->ldhpref & LDH_LBA) {
|
||
|
cmd.sector = (sector >> 0) & 0xFF;
|
||
|
cmd.cyl_lo = (sector >> 8) & 0xFF;
|
||
|
cmd.cyl_hi = (sector >> 16) & 0xFF;
|
||
|
cmd.ldh = wn->ldhpref | ((sector >> 24) & 0xF);
|
||
|
} else {
|
||
|
int cylinder, head, sec;
|
||
|
cylinder = sector / secspcyl;
|
||
|
head = (sector % secspcyl) / wn->sectors;
|
||
|
sec = sector % wn->sectors;
|
||
|
cmd.sector = sec + 1;
|
||
|
cmd.cyl_lo = cylinder & BYTE;
|
||
|
cmd.cyl_hi = (cylinder >> 8) & BYTE;
|
||
|
cmd.ldh = wn->ldhpref | head;
|
||
|
}
|
||
|
|
||
|
return com_out(&cmd);
|
||
|
}
|
||
|
|
||
|
static void stop_dma(const struct wini *wn)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
/* Stop bus master operation */
|
||
|
r= sys_outb(wn->base_dma + DMA_COMMAND, 0);
|
||
|
if (r != 0) panic("stop_dma: sys_outb failed: %d", r);
|
||
|
}
|
||
|
|
||
|
static void start_dma(const struct wini *wn, int do_write)
|
||
|
{
|
||
|
u32_t v;
|
||
|
int r;
|
||
|
|
||
|
/* Assume disk reads. Start DMA */
|
||
|
v= DMA_CMD_START;
|
||
|
if (!do_write)
|
||
|
{
|
||
|
/* Disk reads generate PCI write cycles. */
|
||
|
v |= DMA_CMD_WRITE;
|
||
|
}
|
||
|
r= sys_outb(wn->base_dma + DMA_COMMAND, v);
|
||
|
if (r != 0) panic("start_dma: sys_outb failed: %d", r);
|
||
|
}
|
||
|
|
||
|
static int error_dma(const struct wini *wn)
|
||
|
{
|
||
|
int r;
|
||
|
u32_t v;
|
||
|
|
||
|
#define DMAERR(msg) \
|
||
|
printf("at_wini%ld: bad DMA: %s. Disabling DMA for drive %d.\n", \
|
||
|
w_instance, msg, wn - wini); \
|
||
|
printf("at_wini%ld: workaround: set %s=1 in boot monitor.\n", \
|
||
|
w_instance, NO_DMA_VAR); \
|
||
|
return 1; \
|
||
|
|
||
|
r= sys_inb(wn->base_dma + DMA_STATUS, &v);
|
||
|
if (r != 0) panic("w_transfer: sys_inb failed: %d", r);
|
||
|
|
||
|
if (!wn->dma_intseen) {
|
||
|
/* DMA did not complete successfully */
|
||
|
if (v & DMA_ST_BM_ACTIVE) {
|
||
|
DMAERR("DMA did not complete");
|
||
|
} else if (v & DMA_ST_ERROR) {
|
||
|
DMAERR("DMA error");
|
||
|
} else {
|
||
|
DMAERR("DMA buffer too small");
|
||
|
}
|
||
|
} else if ((v & DMA_ST_BM_ACTIVE)) {
|
||
|
DMAERR("DMA buffer too large");
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_transfer *
|
||
|
*===========================================================================*/
|
||
|
static ssize_t w_transfer(
|
||
|
devminor_t minor, /* minor device to perform the transfer on */
|
||
|
int do_write, /* read or write? */
|
||
|
u64_t position, /* offset on device to read or write */
|
||
|
endpoint_t proc_nr, /* process doing the request */
|
||
|
iovec_t *iov, /* pointer to read or write request vector */
|
||
|
unsigned int nr_req, /* length of request vector */
|
||
|
int UNUSED(flags) /* transfer flags */
|
||
|
)
|
||
|
{
|
||
|
struct wini *wn;
|
||
|
iovec_t *iop, *iov_end = iov + nr_req;
|
||
|
int r, s, errors, do_dma;
|
||
|
unsigned long block;
|
||
|
u32_t w_status;
|
||
|
u64_t dv_size;
|
||
|
unsigned int n, nbytes;
|
||
|
unsigned dma_buf_offset;
|
||
|
ssize_t total = 0;
|
||
|
size_t addr_offset = 0;
|
||
|
|
||
|
if (w_prepare(minor) == NULL) return(ENXIO);
|
||
|
|
||
|
wn = w_wn;
|
||
|
dv_size = w_dv->dv_size;
|
||
|
|
||
|
if (w_wn->state & ATAPI) {
|
||
|
return atapi_transfer(do_write, position, proc_nr, iov, nr_req);
|
||
|
}
|
||
|
|
||
|
/* Check disk address. */
|
||
|
if ((unsigned)(position % SECTOR_SIZE) != 0) return(EINVAL);
|
||
|
|
||
|
errors = 0;
|
||
|
|
||
|
while (nr_req > 0) {
|
||
|
/* How many bytes to transfer? */
|
||
|
nbytes = 0;
|
||
|
for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
|
||
|
if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
|
||
|
|
||
|
/* Which block on disk and how close to EOF? */
|
||
|
if (position >= dv_size) return(total); /* At EOF */
|
||
|
if (position + nbytes > dv_size)
|
||
|
nbytes = (unsigned)(dv_size - position);
|
||
|
block = (unsigned long)((w_dv->dv_base + position) / SECTOR_SIZE);
|
||
|
|
||
|
do_dma= wn->dma;
|
||
|
|
||
|
if (nbytes >= wn->max_count) {
|
||
|
/* The drive can't do more then max_count at once. */
|
||
|
nbytes = wn->max_count;
|
||
|
}
|
||
|
|
||
|
/* First check to see if a reinitialization is needed. */
|
||
|
if (!(wn->state & INITIALIZED) && w_specify() != OK) return(EIO);
|
||
|
|
||
|
if (do_dma) {
|
||
|
stop_dma(wn);
|
||
|
if (!setup_dma(&nbytes, proc_nr, iov, addr_offset, do_write)) {
|
||
|
do_dma = 0;
|
||
|
}
|
||
|
#if 0
|
||
|
printf("nbytes = %d\n", nbytes);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Tell the controller to transfer nbytes bytes. */
|
||
|
r = do_transfer(wn, (nbytes >> SECTOR_SHIFT), block, do_write, do_dma);
|
||
|
|
||
|
if (do_dma)
|
||
|
start_dma(wn, do_write);
|
||
|
|
||
|
if (do_write) {
|
||
|
/* The specs call for a 400 ns wait after issuing the command.
|
||
|
* Reading the alternate status register is the suggested
|
||
|
* way to implement this wait.
|
||
|
*/
|
||
|
if (sys_inb((wn->base_ctl+REG_CTL_ALTSTAT), &w_status) != OK)
|
||
|
panic("couldn't get status");
|
||
|
}
|
||
|
|
||
|
if (do_dma) {
|
||
|
/* Wait for the interrupt, check DMA status and optionally
|
||
|
* copy out.
|
||
|
*/
|
||
|
|
||
|
wn->dma_intseen = 0;
|
||
|
if ((r = at_intr_wait()) != OK)
|
||
|
{
|
||
|
/* Don't retry if sector marked bad or too many
|
||
|
* errors.
|
||
|
*/
|
||
|
if (r == ERR_BAD_SECTOR || ++errors == max_errors) {
|
||
|
w_command = CMD_IDLE;
|
||
|
return(EIO);
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Wait for DMA_ST_INT to get set */
|
||
|
if (!wn->dma_intseen) {
|
||
|
if(w_waitfor_dma(DMA_ST_INT, DMA_ST_INT))
|
||
|
wn->dma_intseen = 1;
|
||
|
}
|
||
|
|
||
|
if (error_dma(wn)) {
|
||
|
wn->dma = 0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
stop_dma(wn);
|
||
|
|
||
|
dma_buf_offset= 0;
|
||
|
while (r == OK && nbytes > 0)
|
||
|
{
|
||
|
n= iov->iov_size;
|
||
|
if (n > nbytes)
|
||
|
n= nbytes;
|
||
|
|
||
|
/* Book the bytes successfully transferred. */
|
||
|
nbytes -= n;
|
||
|
position= position + n;
|
||
|
total += n;
|
||
|
addr_offset += n;
|
||
|
if ((iov->iov_size -= n) == 0) {
|
||
|
iov++; nr_req--; addr_offset = 0;
|
||
|
}
|
||
|
dma_buf_offset += n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while (r == OK && nbytes > 0) {
|
||
|
/* For each sector, wait for an interrupt and fetch the data
|
||
|
* (read), or supply data to the controller and wait for an
|
||
|
* interrupt (write).
|
||
|
*/
|
||
|
|
||
|
if (!do_write) {
|
||
|
/* First an interrupt, then data. */
|
||
|
if ((r = at_intr_wait()) != OK) {
|
||
|
/* An error, send data to the bit bucket. */
|
||
|
if (w_wn->w_status & STATUS_DRQ) {
|
||
|
if ((s=sys_insw(wn->base_cmd+REG_DATA,
|
||
|
SELF, tmp_buf,
|
||
|
SECTOR_SIZE)) != OK) {
|
||
|
panic("Call to sys_insw() failed: %d", s);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Wait for busy to clear. */
|
||
|
if (!w_waitfor(STATUS_BSY, 0)) { r = ERR; break; }
|
||
|
|
||
|
/* Wait for data transfer requested. */
|
||
|
if (!w_waitfor(STATUS_DRQ, STATUS_DRQ)) { r = ERR; break; }
|
||
|
|
||
|
/* Copy bytes to or from the device's buffer. */
|
||
|
if (!do_write) {
|
||
|
if(proc_nr != SELF) {
|
||
|
s=sys_safe_insw(wn->base_cmd + REG_DATA, proc_nr,
|
||
|
(void *) (iov->iov_addr), addr_offset,
|
||
|
SECTOR_SIZE);
|
||
|
} else {
|
||
|
s=sys_insw(wn->base_cmd + REG_DATA, proc_nr,
|
||
|
(void *) (iov->iov_addr + addr_offset),
|
||
|
SECTOR_SIZE);
|
||
|
}
|
||
|
if(s != OK) {
|
||
|
panic("Call to sys_insw() failed: %d", s);
|
||
|
}
|
||
|
} else {
|
||
|
if(proc_nr != SELF) {
|
||
|
s=sys_safe_outsw(wn->base_cmd + REG_DATA, proc_nr,
|
||
|
(void *) (iov->iov_addr), addr_offset,
|
||
|
SECTOR_SIZE);
|
||
|
} else {
|
||
|
s=sys_outsw(wn->base_cmd + REG_DATA, proc_nr,
|
||
|
(void *) (iov->iov_addr + addr_offset),
|
||
|
SECTOR_SIZE);
|
||
|
}
|
||
|
|
||
|
if(s != OK) {
|
||
|
panic("Call to sys_outsw() failed: %d", s);
|
||
|
}
|
||
|
|
||
|
/* Data sent, wait for an interrupt. */
|
||
|
if ((r = at_intr_wait()) != OK) break;
|
||
|
}
|
||
|
|
||
|
/* Book the bytes successfully transferred. */
|
||
|
nbytes -= SECTOR_SIZE;
|
||
|
position = position + SECTOR_SIZE;
|
||
|
addr_offset += SECTOR_SIZE;
|
||
|
total += SECTOR_SIZE;
|
||
|
if ((iov->iov_size -= SECTOR_SIZE) == 0) {
|
||
|
iov++;
|
||
|
nr_req--;
|
||
|
addr_offset = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Any errors? */
|
||
|
if (r != OK) {
|
||
|
/* Don't retry if sector marked bad or too many errors. */
|
||
|
if (r == ERR_BAD_SECTOR || ++errors == max_errors) {
|
||
|
w_command = CMD_IDLE;
|
||
|
return(EIO);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
w_command = CMD_IDLE;
|
||
|
return(total);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* com_out *
|
||
|
*===========================================================================*/
|
||
|
static int com_out(cmd)
|
||
|
struct command *cmd; /* Command block */
|
||
|
{
|
||
|
/* Output the command block to the winchester controller and return status */
|
||
|
|
||
|
struct wini *wn = w_wn;
|
||
|
unsigned base_cmd = wn->base_cmd;
|
||
|
unsigned base_ctl = wn->base_ctl;
|
||
|
pvb_pair_t outbyte[7]; /* vector for sys_voutb() */
|
||
|
int s; /* status for sys_(v)outb() */
|
||
|
|
||
|
if (w_wn->state & IGNORING) return ERR;
|
||
|
|
||
|
if (!w_waitfor(STATUS_BSY, 0)) {
|
||
|
printf("%s: controller not ready\n", w_name());
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
/* Select drive. */
|
||
|
if ((s=sys_outb(base_cmd + REG_LDH, cmd->ldh)) != OK)
|
||
|
panic("Couldn't write register to select drive: %d", s);
|
||
|
|
||
|
if (!w_waitfor(STATUS_BSY, 0)) {
|
||
|
printf("%s: com_out: drive not ready\n", w_name());
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
/* Schedule a wakeup call, some controllers are flaky. This is done with a
|
||
|
* synchronous alarm. If a timeout occurs a notify from CLOCK is sent, so that
|
||
|
* w_intr_wait() can call w_timeout() in case the controller was not able to
|
||
|
* execute the command. Leftover timeouts are simply ignored by the main loop.
|
||
|
*/
|
||
|
sys_setalarm(wakeup_ticks, 0);
|
||
|
|
||
|
wn->w_status = STATUS_ADMBSY;
|
||
|
w_command = cmd->command;
|
||
|
pv_set(outbyte[0], base_ctl + REG_CTL, wn->heads >= 8 ? CTL_EIGHTHEADS : 0);
|
||
|
pv_set(outbyte[1], base_cmd + REG_PRECOMP, cmd->precomp);
|
||
|
pv_set(outbyte[2], base_cmd + REG_COUNT, cmd->count);
|
||
|
pv_set(outbyte[3], base_cmd + REG_SECTOR, cmd->sector);
|
||
|
pv_set(outbyte[4], base_cmd + REG_CYL_LO, cmd->cyl_lo);
|
||
|
pv_set(outbyte[5], base_cmd + REG_CYL_HI, cmd->cyl_hi);
|
||
|
pv_set(outbyte[6], base_cmd + REG_COMMAND, cmd->command);
|
||
|
if ((s=sys_voutb(outbyte,7)) != OK)
|
||
|
panic("Couldn't write registers with sys_voutb(): %d", s);
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* com_out_ext *
|
||
|
*===========================================================================*/
|
||
|
static int com_out_ext(cmd)
|
||
|
struct command *cmd; /* Command block */
|
||
|
{
|
||
|
/* Output the command block to the winchester controller and return status */
|
||
|
|
||
|
struct wini *wn = w_wn;
|
||
|
unsigned base_cmd = wn->base_cmd;
|
||
|
unsigned base_ctl = wn->base_ctl;
|
||
|
pvb_pair_t outbyte[11]; /* vector for sys_voutb() */
|
||
|
int s; /* status for sys_(v)outb() */
|
||
|
|
||
|
if (w_wn->state & IGNORING) return ERR;
|
||
|
|
||
|
if (!w_waitfor(STATUS_BSY, 0)) {
|
||
|
printf("%s: controller not ready\n", w_name());
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
/* Select drive. */
|
||
|
if ((s=sys_outb(base_cmd + REG_LDH, cmd->ldh)) != OK)
|
||
|
panic("Couldn't write register to select drive: %d", s);
|
||
|
|
||
|
if (!w_waitfor(STATUS_BSY, 0)) {
|
||
|
printf("%s: com_out: drive not ready\n", w_name());
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
/* Schedule a wakeup call, some controllers are flaky. This is done with a
|
||
|
* synchronous alarm. If a timeout occurs a notify from CLOCK is sent, so that
|
||
|
* w_intr_wait() can call w_timeout() in case the controller was not able to
|
||
|
* execute the command. Leftover timeouts are simply ignored by the main loop.
|
||
|
*/
|
||
|
sys_setalarm(wakeup_ticks, 0);
|
||
|
|
||
|
wn->w_status = STATUS_ADMBSY;
|
||
|
w_command = cmd->command;
|
||
|
pv_set(outbyte[0], base_ctl + REG_CTL, 0);
|
||
|
pv_set(outbyte[1], base_cmd + REG_COUNT, cmd->count_prev);
|
||
|
pv_set(outbyte[2], base_cmd + REG_SECTOR, cmd->sector_prev);
|
||
|
pv_set(outbyte[3], base_cmd + REG_CYL_LO, cmd->cyl_lo_prev);
|
||
|
pv_set(outbyte[4], base_cmd + REG_CYL_HI, cmd->cyl_hi_prev);
|
||
|
pv_set(outbyte[5], base_cmd + REG_COUNT, cmd->count);
|
||
|
pv_set(outbyte[6], base_cmd + REG_SECTOR, cmd->sector);
|
||
|
pv_set(outbyte[7], base_cmd + REG_CYL_LO, cmd->cyl_lo);
|
||
|
pv_set(outbyte[8], base_cmd + REG_CYL_HI, cmd->cyl_hi);
|
||
|
pv_set(outbyte[9], base_cmd + REG_COMMAND, cmd->command);
|
||
|
if ((s=sys_voutb(outbyte, 10)) != OK)
|
||
|
panic("Couldn't write registers with sys_voutb(): %d", s);
|
||
|
|
||
|
return(OK);
|
||
|
}
|
||
|
/*===========================================================================*
|
||
|
* setup_dma *
|
||
|
*===========================================================================*/
|
||
|
static int setup_dma(
|
||
|
unsigned *sizep,
|
||
|
endpoint_t proc_nr,
|
||
|
iovec_t *iov,
|
||
|
size_t addr_offset,
|
||
|
int UNUSED(do_write)
|
||
|
)
|
||
|
{
|
||
|
phys_bytes user_phys;
|
||
|
unsigned n, offset, size;
|
||
|
int i, j, r;
|
||
|
u32_t v;
|
||
|
struct wini *wn = w_wn;
|
||
|
|
||
|
/* First try direct scatter/gather to the supplied buffers */
|
||
|
size= *sizep;
|
||
|
i= 0; /* iov index */
|
||
|
j= 0; /* prdt index */
|
||
|
offset= 0; /* Offset in current iov */
|
||
|
|
||
|
#if VERBOSE_DMA
|
||
|
printf("at_wini: setup_dma: proc_nr %d\n", proc_nr);
|
||
|
#endif
|
||
|
|
||
|
while (size > 0)
|
||
|
{
|
||
|
#if VERBOSE_DMA
|
||
|
printf(
|
||
|
"at_wini: setup_dma: iov[%d]: addr 0x%lx, size %ld offset %d, size %d\n",
|
||
|
i, iov[i].iov_addr, iov[i].iov_size, offset, size);
|
||
|
#endif
|
||
|
|
||
|
n= iov[i].iov_size-offset;
|
||
|
if (n > size)
|
||
|
n= size;
|
||
|
if (n == 0 || (n & 1))
|
||
|
panic("bad size in iov: 0x%lx", iov[i].iov_size);
|
||
|
if(proc_nr != SELF) {
|
||
|
r= sys_umap(proc_nr, VM_GRANT, iov[i].iov_addr, n,
|
||
|
&user_phys);
|
||
|
if (r != 0)
|
||
|
panic("can't map user buffer (VM_GRANT): %d", r);
|
||
|
user_phys += offset + addr_offset;
|
||
|
} else {
|
||
|
r= sys_umap(proc_nr, VM_D,
|
||
|
iov[i].iov_addr+offset+addr_offset, n,
|
||
|
&user_phys);
|
||
|
if (r != 0)
|
||
|
panic("can't map user buffer (VM_D): %d", r);
|
||
|
}
|
||
|
if (user_phys & 1)
|
||
|
{
|
||
|
/* Buffer is not aligned */
|
||
|
printf("setup_dma: user buffer is not aligned\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* vector is not allowed to cross a 64K boundary */
|
||
|
if (user_phys/0x10000 != (user_phys+n-1)/0x10000)
|
||
|
n= ((user_phys/0x10000)+1)*0x10000 - user_phys;
|
||
|
|
||
|
/* vector is not allowed to be bigger than 64K, but we get that
|
||
|
* for free.
|
||
|
*/
|
||
|
|
||
|
if (j >= N_PRDTE)
|
||
|
{
|
||
|
/* Too many entries */
|
||
|
printf("setup_dma: user buffer has too many entries\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
prdt[j].prdte_base= user_phys;
|
||
|
prdt[j].prdte_count= n;
|
||
|
prdt[j].prdte_reserved= 0;
|
||
|
prdt[j].prdte_flags= 0;
|
||
|
j++;
|
||
|
|
||
|
offset += n;
|
||
|
if (offset >= iov[i].iov_size)
|
||
|
{
|
||
|
i++;
|
||
|
offset= 0;
|
||
|
addr_offset= 0;
|
||
|
}
|
||
|
|
||
|
size -= n;
|
||
|
}
|
||
|
|
||
|
if (j <= 0 || j > N_PRDTE)
|
||
|
panic("bad prdt index: %d", j);
|
||
|
prdt[j-1].prdte_flags |= PRDTE_FL_EOT;
|
||
|
|
||
|
#if VERBOSE_DMA
|
||
|
printf("dma not bad\n");
|
||
|
for (i= 0; i<j; i++) {
|
||
|
printf("prdt[%d]: base 0x%lx, size %d, flags 0x%x\n",
|
||
|
i, prdt[i].prdte_base, prdt[i].prdte_count,
|
||
|
prdt[i].prdte_flags);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Verify that the bus master is not active */
|
||
|
r= sys_inb(wn->base_dma + DMA_STATUS, &v);
|
||
|
if (r != 0) panic("setup_dma: sys_inb failed: %d", r);
|
||
|
if (v & DMA_ST_BM_ACTIVE)
|
||
|
panic("Bus master IDE active");
|
||
|
|
||
|
if (prdt_phys & 3)
|
||
|
panic("prdt not aligned: 0x%lx", prdt_phys);
|
||
|
r= sys_outl(wn->base_dma + DMA_PRDTP, prdt_phys);
|
||
|
if (r != 0) panic("setup_dma: sys_outl failed: %d", r);
|
||
|
|
||
|
/* Clear interrupt and error flags */
|
||
|
r= sys_outb(wn->base_dma + DMA_STATUS, DMA_ST_INT | DMA_ST_ERROR);
|
||
|
if (r != 0) panic("setup_dma: sys_outb failed: %d", r);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_need_reset *
|
||
|
*===========================================================================*/
|
||
|
static void w_need_reset(void)
|
||
|
{
|
||
|
/* The controller needs to be reset. */
|
||
|
struct wini *wn;
|
||
|
|
||
|
for (wn = wini; wn < &wini[MAX_DRIVES]; wn++) {
|
||
|
if (wn->base_cmd == w_wn->base_cmd) {
|
||
|
wn->state |= DEAF;
|
||
|
wn->state &= ~INITIALIZED;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_do_close *
|
||
|
*===========================================================================*/
|
||
|
static int w_do_close(devminor_t minor)
|
||
|
{
|
||
|
/* Device close: Release a device. */
|
||
|
if (w_prepare(minor) == NULL)
|
||
|
return(ENXIO);
|
||
|
w_wn->open_ct--;
|
||
|
if (w_wn->open_ct == 0 && (w_wn->state & ATAPI)) atapi_close();
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* com_simple *
|
||
|
*===========================================================================*/
|
||
|
static int com_simple(cmd)
|
||
|
struct command *cmd; /* Command block */
|
||
|
{
|
||
|
/* A simple controller command, only one interrupt and no data-out phase. */
|
||
|
int r;
|
||
|
|
||
|
if (w_wn->state & IGNORING) return ERR;
|
||
|
|
||
|
if ((r = com_out(cmd)) == OK) r = at_intr_wait();
|
||
|
w_command = CMD_IDLE;
|
||
|
return(r);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_timeout *
|
||
|
*===========================================================================*/
|
||
|
static void w_timeout(void)
|
||
|
{
|
||
|
struct wini *wn = w_wn;
|
||
|
|
||
|
switch (w_command) {
|
||
|
case CMD_IDLE:
|
||
|
break; /* fine */
|
||
|
case CMD_READ:
|
||
|
case CMD_READ_EXT:
|
||
|
case CMD_WRITE:
|
||
|
case CMD_WRITE_EXT:
|
||
|
/* Impossible, but not on PC's: The controller does not respond. */
|
||
|
|
||
|
/* Limiting multisector I/O seems to help. */
|
||
|
if (wn->max_count > 8 * SECTOR_SIZE) {
|
||
|
wn->max_count = 8 * SECTOR_SIZE;
|
||
|
} else {
|
||
|
wn->max_count = SECTOR_SIZE;
|
||
|
}
|
||
|
/*FALL THROUGH*/
|
||
|
default:
|
||
|
/* Some other command. */
|
||
|
if (w_testing) wn->state |= IGNORING; /* Kick out this drive. */
|
||
|
else if (!w_silent) printf("%s: timeout on command 0x%02x\n",
|
||
|
w_name(), w_command);
|
||
|
w_need_reset();
|
||
|
wn->w_status = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_reset *
|
||
|
*===========================================================================*/
|
||
|
static int w_reset(void)
|
||
|
{
|
||
|
/* Issue a reset to the controller. This is done after any catastrophe,
|
||
|
* like the controller refusing to respond.
|
||
|
*/
|
||
|
int s;
|
||
|
struct wini *wn = w_wn;
|
||
|
|
||
|
/* Don't bother if this drive is forgotten. */
|
||
|
if (w_wn->state & IGNORING) return ERR;
|
||
|
|
||
|
/* Wait for any internal drive recovery. */
|
||
|
tickdelay(RECOVERY_TICKS);
|
||
|
|
||
|
/* Strobe reset bit */
|
||
|
if ((s=sys_outb(wn->base_ctl + REG_CTL, CTL_RESET)) != OK)
|
||
|
panic("Couldn't strobe reset bit: %d", s);
|
||
|
tickdelay(DELAY_TICKS);
|
||
|
if ((s=sys_outb(wn->base_ctl + REG_CTL, 0)) != OK)
|
||
|
panic("Couldn't strobe reset bit: %d", s);
|
||
|
tickdelay(DELAY_TICKS);
|
||
|
|
||
|
/* Wait for controller ready */
|
||
|
if (!w_waitfor(STATUS_BSY, 0)) {
|
||
|
printf("%s: reset failed, drive busy\n", w_name());
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
/* The error register should be checked now, but some drives mess it up. */
|
||
|
|
||
|
for (wn = wini; wn < &wini[MAX_DRIVES]; wn++) {
|
||
|
if (wn->base_cmd == w_wn->base_cmd) {
|
||
|
wn->state &= ~DEAF;
|
||
|
if (w_wn->native) {
|
||
|
/* Make sure irq is actually enabled.. */
|
||
|
sys_irqenable(&w_wn->irq_hook_id);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_intr_wait *
|
||
|
*===========================================================================*/
|
||
|
static void w_intr_wait(void)
|
||
|
{
|
||
|
/* Wait for a task completion interrupt. */
|
||
|
|
||
|
int r;
|
||
|
u32_t w_status;
|
||
|
message m;
|
||
|
int ipc_status;
|
||
|
|
||
|
if (w_wn->state & IDENTIFIED) {
|
||
|
/* Wait for an interrupt that sets w_status to "not busy".
|
||
|
* (w_timeout() also clears w_status.)
|
||
|
*/
|
||
|
while (w_wn->w_status & (STATUS_ADMBSY|STATUS_BSY)) {
|
||
|
if ((r=driver_receive(ANY, &m, &ipc_status)) != OK)
|
||
|
panic("driver_receive failed: %d", r);
|
||
|
if (is_ipc_notify(ipc_status)) {
|
||
|
switch (_ENDPOINT_P(m.m_source)) {
|
||
|
case CLOCK:
|
||
|
/* Timeout. */
|
||
|
w_timeout(); /* a.o. set w_status */
|
||
|
break;
|
||
|
case HARDWARE:
|
||
|
/* Interrupt. */
|
||
|
r= sys_inb(w_wn->base_cmd +
|
||
|
REG_STATUS, &w_status);
|
||
|
if (r != 0)
|
||
|
panic("sys_inb failed: %d", r);
|
||
|
w_wn->w_status= w_status;
|
||
|
w_hw_int(m.m_notify.interrupts);
|
||
|
break;
|
||
|
default:
|
||
|
/*
|
||
|
* unhandled message. queue it and
|
||
|
* handle it in the blockdriver loop.
|
||
|
*/
|
||
|
blockdriver_mq_queue(&m, ipc_status);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/*
|
||
|
* unhandled message. queue it and handle it in the
|
||
|
* blockdriver loop.
|
||
|
*/
|
||
|
blockdriver_mq_queue(&m, ipc_status);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/* Device not yet identified; use polling. */
|
||
|
(void) w_waitfor(STATUS_BSY, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* at_intr_wait *
|
||
|
*===========================================================================*/
|
||
|
static int at_intr_wait(void)
|
||
|
{
|
||
|
/* Wait for an interrupt, study the status bits and return error/success. */
|
||
|
int r, s;
|
||
|
u32_t inbval;
|
||
|
|
||
|
w_intr_wait();
|
||
|
if ((w_wn->w_status & (STATUS_BSY | STATUS_WF | STATUS_ERR)) == 0) {
|
||
|
r = OK;
|
||
|
} else {
|
||
|
if ((s=sys_inb(w_wn->base_cmd + REG_ERROR, &inbval)) != OK)
|
||
|
panic("Couldn't read register: %d", s);
|
||
|
if ((w_wn->w_status & STATUS_ERR) && (inbval & ERROR_BB)) {
|
||
|
r = ERR_BAD_SECTOR; /* sector marked bad, retries won't help */
|
||
|
} else {
|
||
|
r = ERR; /* any other error */
|
||
|
}
|
||
|
}
|
||
|
w_wn->w_status |= STATUS_ADMBSY; /* assume still busy with I/O */
|
||
|
return(r);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_waitfor *
|
||
|
*===========================================================================*/
|
||
|
static int w_waitfor(mask, value)
|
||
|
int mask; /* status mask */
|
||
|
int value; /* required status */
|
||
|
{
|
||
|
/* Wait until controller is in the required state. Return zero on timeout.
|
||
|
*/
|
||
|
u32_t w_status;
|
||
|
spin_t spin;
|
||
|
int s;
|
||
|
|
||
|
SPIN_FOR(&spin, timeout_usecs) {
|
||
|
if ((s=sys_inb(w_wn->base_cmd + REG_STATUS, &w_status)) != OK)
|
||
|
panic("Couldn't read register: %d", s);
|
||
|
w_wn->w_status= w_status;
|
||
|
if ((w_wn->w_status & mask) == value) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
w_need_reset(); /* controller gone deaf */
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_waitfor_dma *
|
||
|
*===========================================================================*/
|
||
|
static int w_waitfor_dma(mask, value)
|
||
|
unsigned int mask; /* status mask */
|
||
|
unsigned value; /* required status */
|
||
|
{
|
||
|
/* Wait until controller is in the required state. Return zero on timeout.
|
||
|
*/
|
||
|
u32_t w_status;
|
||
|
spin_t spin;
|
||
|
int s;
|
||
|
|
||
|
SPIN_FOR(&spin, timeout_usecs) {
|
||
|
if ((s=sys_inb(w_wn->base_dma + DMA_STATUS, &w_status)) != OK)
|
||
|
panic("Couldn't read register: %d", s);
|
||
|
if ((w_status & mask) == value) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_geometry *
|
||
|
*===========================================================================*/
|
||
|
static void w_geometry(devminor_t minor, struct part_geom *entry)
|
||
|
{
|
||
|
struct wini *wn;
|
||
|
|
||
|
if (w_prepare(minor) == NULL) return;
|
||
|
|
||
|
wn = w_wn;
|
||
|
|
||
|
if (wn->state & ATAPI) { /* Make up some numbers. */
|
||
|
entry->cylinders = (unsigned long)(wn->part[0].dv_size / SECTOR_SIZE) / (64*32);
|
||
|
entry->heads = 64;
|
||
|
entry->sectors = 32;
|
||
|
} else { /* Return logical geometry. */
|
||
|
entry->cylinders = wn->cylinders;
|
||
|
entry->heads = wn->heads;
|
||
|
entry->sectors = wn->sectors;
|
||
|
while (entry->cylinders > 1024) {
|
||
|
entry->heads *= 2;
|
||
|
entry->cylinders /= 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* atapi_open *
|
||
|
*===========================================================================*/
|
||
|
static int atapi_open(void)
|
||
|
{
|
||
|
/* Should load and lock the device and obtain its size. For now just set the
|
||
|
* size of the device to something big. What is really needed is a generic
|
||
|
* SCSI layer that does all this stuff for ATAPI and SCSI devices (kjb). (XXX)
|
||
|
*/
|
||
|
w_wn->part[0].dv_size = (u64_t)(800L*1024) * 1024;
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* atapi_close *
|
||
|
*===========================================================================*/
|
||
|
static void atapi_close(void)
|
||
|
{
|
||
|
/* Should unlock the device. For now do nothing. (XXX) */
|
||
|
}
|
||
|
|
||
|
static void sense_request(void)
|
||
|
{
|
||
|
int r, i;
|
||
|
static u8_t sense[100], packet[ATAPI_PACKETSIZE];
|
||
|
|
||
|
packet[0] = SCSI_SENSE;
|
||
|
packet[1] = 0;
|
||
|
packet[2] = 0;
|
||
|
packet[3] = 0;
|
||
|
packet[4] = SENSE_PACKETSIZE;
|
||
|
packet[5] = 0;
|
||
|
packet[7] = 0;
|
||
|
packet[8] = 0;
|
||
|
packet[9] = 0;
|
||
|
packet[10] = 0;
|
||
|
packet[11] = 0;
|
||
|
|
||
|
for(i = 0; i < SENSE_PACKETSIZE; i++) sense[i] = 0xff;
|
||
|
r = atapi_sendpacket(packet, SENSE_PACKETSIZE, 0);
|
||
|
if (r != OK) { printf("request sense command failed\n"); return; }
|
||
|
if (atapi_intr_wait(0, 0) <= 0) { printf("WARNING: request response failed\n"); }
|
||
|
|
||
|
if (sys_insw(w_wn->base_cmd + REG_DATA, SELF, (void *) sense, SENSE_PACKETSIZE) != OK)
|
||
|
printf("WARNING: sense reading failed\n");
|
||
|
|
||
|
printf("sense data:");
|
||
|
for(i = 0; i < SENSE_PACKETSIZE; i++) printf(" %02x", sense[i]);
|
||
|
printf("\n");
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* atapi_transfer *
|
||
|
*===========================================================================*/
|
||
|
static int atapi_transfer(
|
||
|
int do_write, /* read or write? */
|
||
|
u64_t position, /* offset on device to read or write */
|
||
|
endpoint_t proc_nr, /* process doing the request */
|
||
|
iovec_t *iov, /* pointer to read or write request vector */
|
||
|
unsigned int nr_req /* length of request vector */
|
||
|
)
|
||
|
{
|
||
|
struct wini *wn = w_wn;
|
||
|
iovec_t *iop, *iov_end = iov + nr_req;
|
||
|
int r, s, errors, fresh;
|
||
|
u64_t pos;
|
||
|
unsigned long block;
|
||
|
u64_t dv_size = w_dv->dv_size;
|
||
|
unsigned nbytes, nblocks, before, chunk;
|
||
|
static u8_t packet[ATAPI_PACKETSIZE];
|
||
|
size_t addr_offset = 0;
|
||
|
int dmabytes = 0, piobytes = 0;
|
||
|
ssize_t total = 0;
|
||
|
|
||
|
if (do_write) return(EINVAL);
|
||
|
|
||
|
errors = fresh = 0;
|
||
|
|
||
|
while (nr_req > 0 && !fresh) {
|
||
|
int do_dma = wn->dma && w_atapi_dma;
|
||
|
/* The Minix block size is smaller than the CD block size, so we
|
||
|
* may have to read extra before or after the good data.
|
||
|
*/
|
||
|
pos = w_dv->dv_base + position;
|
||
|
block = (unsigned long)(pos / CD_SECTOR_SIZE);
|
||
|
before = (unsigned)(pos % CD_SECTOR_SIZE);
|
||
|
|
||
|
if (before)
|
||
|
do_dma = 0;
|
||
|
|
||
|
/* How many bytes to transfer? */
|
||
|
nbytes = 0;
|
||
|
for (iop = iov; iop < iov_end; iop++) {
|
||
|
nbytes += iop->iov_size;
|
||
|
if (iop->iov_size % CD_SECTOR_SIZE)
|
||
|
do_dma = 0;
|
||
|
}
|
||
|
|
||
|
/* Data comes in as words, so we have to enforce even byte counts. */
|
||
|
if ((before | nbytes) & 1) return(EINVAL);
|
||
|
|
||
|
/* Which block on disk and how close to EOF? */
|
||
|
if (position >= dv_size) return(total); /* At EOF */
|
||
|
if (position + nbytes > dv_size)
|
||
|
nbytes = (unsigned)(dv_size - position);
|
||
|
|
||
|
nblocks = (before + nbytes + CD_SECTOR_SIZE - 1) / CD_SECTOR_SIZE;
|
||
|
|
||
|
/* First check to see if a reinitialization is needed. */
|
||
|
if (!(wn->state & INITIALIZED) && w_specify() != OK) return(EIO);
|
||
|
|
||
|
/* Build an ATAPI command packet. */
|
||
|
packet[0] = SCSI_READ10;
|
||
|
packet[1] = 0;
|
||
|
packet[2] = (block >> 24) & 0xFF;
|
||
|
packet[3] = (block >> 16) & 0xFF;
|
||
|
packet[4] = (block >> 8) & 0xFF;
|
||
|
packet[5] = (block >> 0) & 0xFF;
|
||
|
packet[6] = 0;
|
||
|
packet[7] = (nblocks >> 8) & 0xFF;
|
||
|
packet[8] = (nblocks >> 0) & 0xFF;
|
||
|
packet[9] = 0;
|
||
|
packet[10] = 0;
|
||
|
packet[11] = 0;
|
||
|
|
||
|
if(do_dma) {
|
||
|
stop_dma(wn);
|
||
|
if (!setup_dma(&nbytes, proc_nr, iov, addr_offset, 0)) {
|
||
|
do_dma = 0;
|
||
|
} else if(nbytes != nblocks * CD_SECTOR_SIZE) {
|
||
|
stop_dma(wn);
|
||
|
do_dma = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Tell the controller to execute the packet command. */
|
||
|
r = atapi_sendpacket(packet, nblocks * CD_SECTOR_SIZE, do_dma);
|
||
|
if (r != OK) goto err;
|
||
|
|
||
|
if(do_dma) {
|
||
|
wn->dma_intseen = 0;
|
||
|
start_dma(wn, 0);
|
||
|
w_intr_wait();
|
||
|
if(!wn->dma_intseen) {
|
||
|
if(w_waitfor_dma(DMA_ST_INT, DMA_ST_INT)) {
|
||
|
wn->dma_intseen = 1;
|
||
|
}
|
||
|
}
|
||
|
if(error_dma(wn)) {
|
||
|
printf("Disabling DMA (ATAPI)\n");
|
||
|
wn->dma = 0;
|
||
|
} else {
|
||
|
dmabytes += nbytes;
|
||
|
while (nbytes > 0) {
|
||
|
chunk = nbytes;
|
||
|
|
||
|
if (chunk > iov->iov_size)
|
||
|
chunk = iov->iov_size;
|
||
|
position = position + chunk;
|
||
|
nbytes -= chunk;
|
||
|
total += chunk;
|
||
|
if ((iov->iov_size -= chunk) == 0) {
|
||
|
iov++;
|
||
|
nr_req--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Read chunks of data. */
|
||
|
while ((r = atapi_intr_wait(do_dma, nblocks * CD_SECTOR_SIZE)) > 0) {
|
||
|
size_t count;
|
||
|
count = r;
|
||
|
|
||
|
while (before > 0 && count > 0) { /* Discard before. */
|
||
|
chunk = before;
|
||
|
if (chunk > count) chunk = count;
|
||
|
if (chunk > DMA_BUF_SIZE) chunk = DMA_BUF_SIZE;
|
||
|
if ((s=sys_insw(wn->base_cmd + REG_DATA,
|
||
|
SELF, tmp_buf, chunk)) != OK)
|
||
|
panic("Call to sys_insw() failed: %d", s);
|
||
|
before -= chunk;
|
||
|
count -= chunk;
|
||
|
}
|
||
|
|
||
|
while (nbytes > 0 && count > 0) { /* Requested data. */
|
||
|
chunk = nbytes;
|
||
|
if (chunk > count) chunk = count;
|
||
|
if (chunk > iov->iov_size) chunk = iov->iov_size;
|
||
|
if(proc_nr != SELF) {
|
||
|
s=sys_safe_insw(wn->base_cmd + REG_DATA,
|
||
|
proc_nr, (void *) iov->iov_addr,
|
||
|
addr_offset, chunk);
|
||
|
} else {
|
||
|
s=sys_insw(wn->base_cmd + REG_DATA, proc_nr,
|
||
|
(void *) (iov->iov_addr + addr_offset),
|
||
|
chunk);
|
||
|
}
|
||
|
if (s != OK)
|
||
|
panic("Call to sys_insw() failed: %d", s);
|
||
|
position = position + chunk;
|
||
|
nbytes -= chunk;
|
||
|
count -= chunk;
|
||
|
addr_offset += chunk;
|
||
|
piobytes += chunk;
|
||
|
fresh = 0;
|
||
|
total += chunk;
|
||
|
if ((iov->iov_size -= chunk) == 0) {
|
||
|
iov++;
|
||
|
nr_req--;
|
||
|
fresh = 1; /* new element is optional */
|
||
|
addr_offset = 0;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
while (count > 0) { /* Excess data. */
|
||
|
chunk = count;
|
||
|
if (chunk > DMA_BUF_SIZE) chunk = DMA_BUF_SIZE;
|
||
|
if ((s=sys_insw(wn->base_cmd + REG_DATA,
|
||
|
SELF, tmp_buf, chunk)) != OK)
|
||
|
panic("Call to sys_insw() failed: %d", s);
|
||
|
count -= chunk;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (r < 0) {
|
||
|
err: /* Don't retry if too many errors. */
|
||
|
if (atapi_debug) sense_request();
|
||
|
if (++errors == max_errors) {
|
||
|
w_command = CMD_IDLE;
|
||
|
if (atapi_debug) printf("giving up (%d)\n", errors);
|
||
|
return(EIO);
|
||
|
}
|
||
|
if (atapi_debug) printf("retry (%d)\n", errors);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
if(dmabytes) printf("dmabytes %d ", dmabytes);
|
||
|
if(piobytes) printf("piobytes %d", piobytes);
|
||
|
if(dmabytes || piobytes) printf("\n");
|
||
|
#endif
|
||
|
|
||
|
w_command = CMD_IDLE;
|
||
|
return(total);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* atapi_sendpacket *
|
||
|
*===========================================================================*/
|
||
|
static int atapi_sendpacket(packet, cnt, do_dma)
|
||
|
u8_t *packet;
|
||
|
unsigned cnt;
|
||
|
int do_dma;
|
||
|
{
|
||
|
/* Send an Atapi Packet Command */
|
||
|
struct wini *wn = w_wn;
|
||
|
pvb_pair_t outbyte[6]; /* vector for sys_voutb() */
|
||
|
int s;
|
||
|
|
||
|
if (wn->state & IGNORING) return ERR;
|
||
|
|
||
|
/* Select Master/Slave drive */
|
||
|
if ((s=sys_outb(wn->base_cmd + REG_DRIVE, wn->ldhpref)) != OK)
|
||
|
panic("Couldn't select master/ slave drive: %d", s);
|
||
|
|
||
|
if (!w_waitfor(STATUS_BSY | STATUS_DRQ, 0)) {
|
||
|
printf("%s: atapi_sendpacket: drive not ready\n", w_name());
|
||
|
return(ERR);
|
||
|
}
|
||
|
|
||
|
/* Schedule a wakeup call, some controllers are flaky. This is done with
|
||
|
* a synchronous alarm. If a timeout occurs a SYN_ALARM message is sent
|
||
|
* from HARDWARE, so that w_intr_wait() can call w_timeout() in case the
|
||
|
* controller was not able to execute the command. Leftover timeouts are
|
||
|
* simply ignored by the main loop.
|
||
|
*/
|
||
|
sys_setalarm(wakeup_ticks, 0);
|
||
|
|
||
|
if (cnt > 0xFFFE) cnt = 0xFFFE; /* Max data per interrupt. */
|
||
|
|
||
|
w_command = ATAPI_PACKETCMD;
|
||
|
pv_set(outbyte[0], wn->base_cmd + REG_FEAT, do_dma ? FEAT_DMA : 0);
|
||
|
pv_set(outbyte[1], wn->base_cmd + REG_IRR, 0);
|
||
|
pv_set(outbyte[2], wn->base_cmd + REG_SAMTAG, 0);
|
||
|
pv_set(outbyte[3], wn->base_cmd + REG_CNT_LO, (cnt >> 0) & 0xFF);
|
||
|
pv_set(outbyte[4], wn->base_cmd + REG_CNT_HI, (cnt >> 8) & 0xFF);
|
||
|
pv_set(outbyte[5], wn->base_cmd + REG_COMMAND, w_command);
|
||
|
if (atapi_debug) printf("cmd: %x ", w_command);
|
||
|
if ((s=sys_voutb(outbyte,6)) != OK)
|
||
|
panic("Couldn't write registers with sys_voutb(): %d", s);
|
||
|
|
||
|
if (!w_waitfor(STATUS_BSY | STATUS_DRQ, STATUS_DRQ)) {
|
||
|
printf("%s: timeout (BSY|DRQ -> DRQ)\n", w_name());
|
||
|
return(ERR);
|
||
|
}
|
||
|
wn->w_status |= STATUS_ADMBSY; /* Command not at all done yet. */
|
||
|
|
||
|
/* Send the command packet to the device. */
|
||
|
if ((s=sys_outsw(wn->base_cmd + REG_DATA, SELF, packet, ATAPI_PACKETSIZE)) != OK)
|
||
|
panic("sys_outsw() failed: %d", s);
|
||
|
|
||
|
return(OK);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_ioctl *
|
||
|
*===========================================================================*/
|
||
|
static int w_ioctl(devminor_t minor, unsigned long request, endpoint_t endpt,
|
||
|
cp_grant_id_t grant, endpoint_t UNUSED(user_endpt))
|
||
|
{
|
||
|
int r, timeout, prev, count;
|
||
|
struct command cmd;
|
||
|
|
||
|
switch (request) {
|
||
|
case DIOCTIMEOUT:
|
||
|
r= sys_safecopyfrom(endpt, grant, 0, (vir_bytes)&timeout,
|
||
|
sizeof(timeout));
|
||
|
|
||
|
if(r != OK)
|
||
|
return r;
|
||
|
|
||
|
if (timeout == 0) {
|
||
|
/* Restore defaults. */
|
||
|
timeout_usecs = DEF_TIMEOUT_USECS;
|
||
|
max_errors = MAX_ERRORS;
|
||
|
wakeup_ticks = WAKEUP_TICKS;
|
||
|
w_silent = 0;
|
||
|
} else if (timeout < 0) {
|
||
|
return EINVAL;
|
||
|
} else {
|
||
|
prev = wakeup_ticks;
|
||
|
|
||
|
if (!w_standard_timeouts) {
|
||
|
/* Set (lower) timeout, lower error
|
||
|
* tolerance and set silent mode.
|
||
|
*/
|
||
|
wakeup_ticks = timeout;
|
||
|
max_errors = 3;
|
||
|
w_silent = 1;
|
||
|
|
||
|
timeout = timeout * 1000000 / sys_hz();
|
||
|
|
||
|
if (timeout_usecs > timeout)
|
||
|
timeout_usecs = timeout;
|
||
|
}
|
||
|
|
||
|
r= sys_safecopyto(endpt, grant, 0, (vir_bytes)&prev,
|
||
|
sizeof(prev));
|
||
|
|
||
|
if(r != OK)
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
return OK;
|
||
|
|
||
|
case DIOCOPENCT:
|
||
|
if (w_prepare(minor) == NULL) return ENXIO;
|
||
|
count = w_wn->open_ct;
|
||
|
r= sys_safecopyto(endpt, grant, 0, (vir_bytes)&count,
|
||
|
sizeof(count));
|
||
|
|
||
|
if(r != OK)
|
||
|
return r;
|
||
|
|
||
|
return OK;
|
||
|
|
||
|
case DIOCFLUSH:
|
||
|
if (w_prepare(minor) == NULL) return ENXIO;
|
||
|
|
||
|
if (w_wn->state & ATAPI) return EINVAL;
|
||
|
|
||
|
if (!(w_wn->state & INITIALIZED) && w_specify() != OK)
|
||
|
return EIO;
|
||
|
|
||
|
cmd.command = CMD_FLUSH_CACHE;
|
||
|
|
||
|
if (com_simple(&cmd) != OK || !w_waitfor(STATUS_BSY, 0))
|
||
|
return EIO;
|
||
|
|
||
|
return (w_wn->w_status & (STATUS_ERR|STATUS_WF)) ? EIO : OK;
|
||
|
}
|
||
|
|
||
|
return ENOTTY;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* w_hw_int *
|
||
|
*===========================================================================*/
|
||
|
static void w_hw_int(unsigned int UNUSED(irqs))
|
||
|
{
|
||
|
/* Leftover interrupt(s) received; ack it/them. For native drives only. */
|
||
|
unsigned int drive;
|
||
|
u32_t w_status;
|
||
|
|
||
|
for (drive = 0; drive < MAX_DRIVES; drive++) {
|
||
|
if (!(wini[drive].state & IGNORING) && wini[drive].native) {
|
||
|
if (sys_inb((wini[drive].base_cmd + REG_STATUS),
|
||
|
&w_status) != OK)
|
||
|
{
|
||
|
panic("couldn't ack irq on drive: %d", drive);
|
||
|
}
|
||
|
wini[drive].w_status= w_status;
|
||
|
sys_inb(wini[drive].base_dma + DMA_STATUS, &w_status);
|
||
|
if(w_status & DMA_ST_INT) {
|
||
|
sys_outb(wini[drive].base_dma + DMA_STATUS, DMA_ST_INT);
|
||
|
wini[drive].dma_intseen = 1;
|
||
|
}
|
||
|
if (sys_irqenable(&wini[drive].irq_hook_id) != OK)
|
||
|
printf("couldn't re-enable drive %d\n", drive);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#define STSTR(a) if (status & STATUS_ ## a) strlcat(str, #a " ", sizeof(str));
|
||
|
#define ERRSTR(a) if (e & ERROR_ ## a) strlcat(str, #a " ", sizeof(str));
|
||
|
static char *strstatus(int status)
|
||
|
{
|
||
|
static char str[200];
|
||
|
str[0] = '\0';
|
||
|
|
||
|
STSTR(BSY);
|
||
|
STSTR(DRDY);
|
||
|
STSTR(DMADF);
|
||
|
STSTR(SRVCDSC);
|
||
|
STSTR(DRQ);
|
||
|
STSTR(CORR);
|
||
|
STSTR(CHECK);
|
||
|
return str;
|
||
|
}
|
||
|
|
||
|
static char *strerr(int e)
|
||
|
{
|
||
|
static char str[200];
|
||
|
str[0] = '\0';
|
||
|
|
||
|
ERRSTR(BB);
|
||
|
ERRSTR(ECC);
|
||
|
ERRSTR(ID);
|
||
|
ERRSTR(AC);
|
||
|
ERRSTR(TK);
|
||
|
ERRSTR(DM);
|
||
|
|
||
|
return str;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* atapi_intr_wait *
|
||
|
*===========================================================================*/
|
||
|
static int atapi_intr_wait(int UNUSED(do_dma), size_t UNUSED(max))
|
||
|
{
|
||
|
/* Wait for an interrupt and study the results. Returns a number of bytes
|
||
|
* that need to be transferred, or an error code.
|
||
|
*/
|
||
|
struct wini *wn = w_wn;
|
||
|
pvb_pair_t inbyte[4]; /* vector for sys_vinb() */
|
||
|
int s; /* status for sys_vinb() */
|
||
|
int e;
|
||
|
int len;
|
||
|
int irr;
|
||
|
int r;
|
||
|
int phase;
|
||
|
|
||
|
w_intr_wait();
|
||
|
|
||
|
/* Request series of device I/O. */
|
||
|
inbyte[0].port = wn->base_cmd + REG_ERROR;
|
||
|
inbyte[1].port = wn->base_cmd + REG_CNT_LO;
|
||
|
inbyte[2].port = wn->base_cmd + REG_CNT_HI;
|
||
|
inbyte[3].port = wn->base_cmd + REG_IRR;
|
||
|
if ((s=sys_vinb(inbyte, 4)) != OK)
|
||
|
panic("ATAPI failed sys_vinb(): %d", s);
|
||
|
e = inbyte[0].value;
|
||
|
len = inbyte[1].value;
|
||
|
len |= inbyte[2].value << 8;
|
||
|
irr = inbyte[3].value;
|
||
|
|
||
|
if (wn->w_status & (STATUS_BSY | STATUS_CHECK)) {
|
||
|
if (atapi_debug) {
|
||
|
printf("atapi fail: S=%x=%s E=%02x=%s L=%04x I=%02x\n", wn->w_status, strstatus(wn->w_status), e, strerr(e), len, irr);
|
||
|
}
|
||
|
return ERR;
|
||
|
}
|
||
|
|
||
|
phase = (wn->w_status & STATUS_DRQ) | (irr & (IRR_COD | IRR_IO));
|
||
|
|
||
|
switch (phase) {
|
||
|
case IRR_COD | IRR_IO:
|
||
|
if (ATAPI_DEBUG) printf("ACD: Phase Command Complete\n");
|
||
|
r = OK;
|
||
|
break;
|
||
|
case 0:
|
||
|
if (ATAPI_DEBUG) printf("ACD: Phase Command Aborted\n");
|
||
|
r = ERR;
|
||
|
break;
|
||
|
case STATUS_DRQ | IRR_COD:
|
||
|
if (ATAPI_DEBUG) printf("ACD: Phase Command Out\n");
|
||
|
r = ERR;
|
||
|
break;
|
||
|
case STATUS_DRQ:
|
||
|
if (ATAPI_DEBUG) printf("ACD: Phase Data Out %d\n", len);
|
||
|
r = len;
|
||
|
break;
|
||
|
case STATUS_DRQ | IRR_IO:
|
||
|
if (ATAPI_DEBUG) printf("ACD: Phase Data In %d\n", len);
|
||
|
r = len;
|
||
|
break;
|
||
|
default:
|
||
|
if (ATAPI_DEBUG) printf("ACD: Phase Unknown\n");
|
||
|
r = ERR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
wn->w_status |= STATUS_ADMBSY; /* Assume not done yet. */
|
||
|
return(r);
|
||
|
}
|