1185 lines
43 KiB
Python
1185 lines
43 KiB
Python
import inspect
|
|
from warnings import warn
|
|
from math import sqrt, atan2, pi as PI
|
|
import numpy as np
|
|
from scipy import ndimage as ndi
|
|
from scipy.spatial.distance import pdist
|
|
|
|
from . import _moments
|
|
from ._find_contours import find_contours
|
|
from ._marching_cubes_lewiner import marching_cubes
|
|
from ._regionprops_utils import euler_number, perimeter, perimeter_crofton
|
|
|
|
from functools import wraps
|
|
|
|
|
|
__all__ = ['regionprops', 'euler_number', 'perimeter', 'perimeter_crofton']
|
|
|
|
|
|
PROPS = {
|
|
'Area': 'area',
|
|
'BoundingBox': 'bbox',
|
|
'BoundingBoxArea': 'bbox_area',
|
|
'CentralMoments': 'moments_central',
|
|
'Centroid': 'centroid',
|
|
'ConvexArea': 'convex_area',
|
|
# 'ConvexHull',
|
|
'ConvexImage': 'convex_image',
|
|
'Coordinates': 'coords',
|
|
'Eccentricity': 'eccentricity',
|
|
'EquivDiameter': 'equivalent_diameter',
|
|
'EulerNumber': 'euler_number',
|
|
'Extent': 'extent',
|
|
# 'Extrema',
|
|
'FeretDiameterMax': 'feret_diameter_max',
|
|
'FilledArea': 'filled_area',
|
|
'FilledImage': 'filled_image',
|
|
'HuMoments': 'moments_hu',
|
|
'Image': 'image',
|
|
'InertiaTensor': 'inertia_tensor',
|
|
'InertiaTensorEigvals': 'inertia_tensor_eigvals',
|
|
'IntensityImage': 'intensity_image',
|
|
'Label': 'label',
|
|
'LocalCentroid': 'local_centroid',
|
|
'MajorAxisLength': 'major_axis_length',
|
|
'MaxIntensity': 'max_intensity',
|
|
'MeanIntensity': 'mean_intensity',
|
|
'MinIntensity': 'min_intensity',
|
|
'MinorAxisLength': 'minor_axis_length',
|
|
'Moments': 'moments',
|
|
'NormalizedMoments': 'moments_normalized',
|
|
'Orientation': 'orientation',
|
|
'Perimeter': 'perimeter',
|
|
'CroftonPerimeter': 'perimeter_crofton',
|
|
# 'PixelIdxList',
|
|
# 'PixelList',
|
|
'Slice': 'slice',
|
|
'Solidity': 'solidity',
|
|
# 'SubarrayIdx'
|
|
'WeightedCentralMoments': 'weighted_moments_central',
|
|
'WeightedCentroid': 'weighted_centroid',
|
|
'WeightedHuMoments': 'weighted_moments_hu',
|
|
'WeightedLocalCentroid': 'weighted_local_centroid',
|
|
'WeightedMoments': 'weighted_moments',
|
|
'WeightedNormalizedMoments': 'weighted_moments_normalized'
|
|
}
|
|
|
|
OBJECT_COLUMNS = {
|
|
'image', 'coords', 'convex_image', 'slice',
|
|
'filled_image', 'intensity_image'
|
|
}
|
|
|
|
COL_DTYPES = {
|
|
'area': int,
|
|
'bbox': int,
|
|
'bbox_area': int,
|
|
'moments_central': float,
|
|
'centroid': float,
|
|
'convex_area': int,
|
|
'convex_image': object,
|
|
'coords': object,
|
|
'eccentricity': float,
|
|
'equivalent_diameter': float,
|
|
'euler_number': int,
|
|
'extent': float,
|
|
'feret_diameter_max': float,
|
|
'filled_area': int,
|
|
'filled_image': object,
|
|
'moments_hu': float,
|
|
'image': object,
|
|
'inertia_tensor': float,
|
|
'inertia_tensor_eigvals': float,
|
|
'intensity_image': object,
|
|
'label': int,
|
|
'local_centroid': float,
|
|
'major_axis_length': float,
|
|
'max_intensity': int,
|
|
'mean_intensity': float,
|
|
'min_intensity': int,
|
|
'minor_axis_length': float,
|
|
'moments': float,
|
|
'moments_normalized': float,
|
|
'orientation': float,
|
|
'perimeter': float,
|
|
'perimeter_crofton': float,
|
|
'slice': object,
|
|
'solidity': float,
|
|
'weighted_moments_central': float,
|
|
'weighted_centroid': float,
|
|
'weighted_moments_hu': float,
|
|
'weighted_local_centroid': float,
|
|
'weighted_moments': float,
|
|
'weighted_moments_normalized': float
|
|
}
|
|
|
|
PROP_VALS = set(PROPS.values())
|
|
|
|
|
|
def _infer_number_of_required_args(func):
|
|
"""Infer the number of required arguments for a function
|
|
|
|
Parameters
|
|
----------
|
|
func : callable
|
|
The function that is being inspected.
|
|
|
|
Returns
|
|
-------
|
|
n_args : int
|
|
The number of required arguments of func.
|
|
"""
|
|
argspec = inspect.getfullargspec(func)
|
|
n_args = len(argspec.args)
|
|
if argspec.defaults is not None:
|
|
n_args -= len(argspec.defaults)
|
|
return n_args
|
|
|
|
|
|
def _infer_regionprop_dtype(func, *, intensity, ndim):
|
|
"""Infer the dtype of a region property calculated by func.
|
|
|
|
If a region property function always returns the same shape and type of
|
|
output regardless of input size, then the dtype is the dtype of the
|
|
returned array. Otherwise, the property has object dtype.
|
|
|
|
Parameters
|
|
----------
|
|
func : callable
|
|
Function to be tested. The signature should be array[bool] -> Any if
|
|
intensity is False, or *(array[bool], array[float]) -> Any otherwise.
|
|
intensity : bool
|
|
Whether the regionprop is calculated on an intensity image.
|
|
ndim : int
|
|
The number of dimensions for which to check func.
|
|
|
|
Returns
|
|
-------
|
|
dtype : NumPy data type
|
|
The data type of the returned property.
|
|
"""
|
|
labels = [1, 2]
|
|
sample = np.zeros((3,) * ndim, dtype=np.intp)
|
|
sample[(0,) * ndim] = labels[0]
|
|
sample[(slice(1, None),) * ndim] = labels[1]
|
|
propmasks = [(sample == n) for n in labels]
|
|
if intensity and _infer_number_of_required_args(func) == 2:
|
|
def _func(mask):
|
|
return func(mask, np.random.random(sample.shape))
|
|
else:
|
|
_func = func
|
|
props1, props2 = map(_func, propmasks)
|
|
if (np.isscalar(props1) and np.isscalar(props2)
|
|
or np.array(props1).shape == np.array(props2).shape):
|
|
dtype = np.array(props1).dtype.type
|
|
else:
|
|
dtype = np.object_
|
|
return dtype
|
|
|
|
|
|
def _cached(f):
|
|
@wraps(f)
|
|
def wrapper(obj):
|
|
cache = obj._cache
|
|
prop = f.__name__
|
|
|
|
if not ((prop in cache) and obj._cache_active):
|
|
cache[prop] = f(obj)
|
|
|
|
return cache[prop]
|
|
|
|
return wrapper
|
|
|
|
|
|
def only2d(method):
|
|
@wraps(method)
|
|
def func2d(self, *args, **kwargs):
|
|
if self._ndim > 2:
|
|
raise NotImplementedError('Property %s is not implemented for '
|
|
'3D images' % method.__name__)
|
|
return method(self, *args, **kwargs)
|
|
return func2d
|
|
|
|
|
|
class RegionProperties:
|
|
"""Please refer to `skimage.measure.regionprops` for more information
|
|
on the available region properties.
|
|
"""
|
|
|
|
def __init__(self, slice, label, label_image, intensity_image,
|
|
cache_active, *, extra_properties=None):
|
|
|
|
if intensity_image is not None:
|
|
ndim = label_image.ndim
|
|
if not (
|
|
intensity_image.shape[:ndim] == label_image.shape
|
|
and intensity_image.ndim in [ndim, ndim + 1]
|
|
):
|
|
raise ValueError('Label and intensity image shapes must match,'
|
|
' except for channel (last) axis.')
|
|
multichannel = label_image.shape < intensity_image.shape
|
|
else:
|
|
multichannel = False
|
|
|
|
self.label = label
|
|
|
|
self._slice = slice
|
|
self.slice = slice
|
|
self._label_image = label_image
|
|
self._intensity_image = intensity_image
|
|
|
|
self._cache_active = cache_active
|
|
self._cache = {}
|
|
self._ndim = label_image.ndim
|
|
self._multichannel = multichannel
|
|
self._spatial_axes = tuple(range(self._ndim))
|
|
|
|
self._extra_properties = {}
|
|
if extra_properties is None:
|
|
extra_properties = []
|
|
for func in extra_properties:
|
|
name = func.__name__
|
|
if hasattr(self, name):
|
|
msg = (
|
|
f"Extra property '{name}' is shadowed by existing "
|
|
"property and will be inaccessible. Consider renaming it."
|
|
)
|
|
warn(msg)
|
|
self._extra_properties = {
|
|
func.__name__: func for func in extra_properties
|
|
}
|
|
|
|
def __getattr__(self, attr):
|
|
if attr in self._extra_properties:
|
|
func = self._extra_properties[attr]
|
|
n_args = _infer_number_of_required_args(func)
|
|
# determine whether func requires intensity image
|
|
if n_args == 2:
|
|
if self._intensity_image is not None:
|
|
return func(self.image, self.intensity_image)
|
|
else:
|
|
raise AttributeError(
|
|
f"intensity image required to calculate {attr}"
|
|
)
|
|
elif n_args == 1:
|
|
return func(self.image)
|
|
else:
|
|
raise AttributeError(
|
|
"Custom regionprop function's number of arguments must be 1 or 2"
|
|
f"but {attr} takes {n_args} arguments."
|
|
)
|
|
else:
|
|
raise AttributeError(
|
|
f"'{type(self)}' object has no attribute '{attr}'"
|
|
)
|
|
|
|
@property
|
|
@_cached
|
|
def area(self):
|
|
return np.sum(self.image)
|
|
|
|
@property
|
|
def bbox(self):
|
|
"""
|
|
Returns
|
|
-------
|
|
A tuple of the bounding box's start coordinates for each dimension,
|
|
followed by the end coordinates for each dimension
|
|
"""
|
|
return tuple([self.slice[i].start for i in range(self._ndim)] +
|
|
[self.slice[i].stop for i in range(self._ndim)])
|
|
|
|
@property
|
|
def bbox_area(self):
|
|
return self.image.size
|
|
|
|
@property
|
|
def centroid(self):
|
|
return tuple(self.coords.mean(axis=0))
|
|
|
|
@property
|
|
@_cached
|
|
def convex_area(self):
|
|
return np.sum(self.convex_image)
|
|
|
|
@property
|
|
@_cached
|
|
def convex_image(self):
|
|
from ..morphology.convex_hull import convex_hull_image
|
|
return convex_hull_image(self.image)
|
|
|
|
@property
|
|
def coords(self):
|
|
indices = np.nonzero(self.image)
|
|
return np.vstack([indices[i] + self.slice[i].start
|
|
for i in range(self._ndim)]).T
|
|
|
|
@property
|
|
@only2d
|
|
def eccentricity(self):
|
|
l1, l2 = self.inertia_tensor_eigvals
|
|
if l1 == 0:
|
|
return 0
|
|
return sqrt(1 - l2 / l1)
|
|
|
|
@property
|
|
def equivalent_diameter(self):
|
|
return (2 * self._ndim * self.area / PI) ** (1 / self._ndim)
|
|
|
|
@property
|
|
def euler_number(self):
|
|
if self._ndim not in [2, 3]:
|
|
raise NotImplementedError('Euler number is implemented for '
|
|
'2D or 3D images only')
|
|
return euler_number(self.image, self._ndim)
|
|
|
|
@property
|
|
def extent(self):
|
|
return self.area / self.image.size
|
|
|
|
@property
|
|
def feret_diameter_max(self):
|
|
identity_convex_hull = np.pad(self.convex_image,
|
|
2, mode='constant', constant_values=0)
|
|
if self._ndim == 2:
|
|
coordinates = np.vstack(find_contours(identity_convex_hull, .5,
|
|
fully_connected='high'))
|
|
elif self._ndim == 3:
|
|
coordinates, _, _, _ = marching_cubes(identity_convex_hull, level=.5)
|
|
distances = pdist(coordinates, 'sqeuclidean')
|
|
return sqrt(np.max(distances))
|
|
|
|
@property
|
|
def filled_area(self):
|
|
return np.sum(self.filled_image)
|
|
|
|
@property
|
|
@_cached
|
|
def filled_image(self):
|
|
structure = np.ones((3,) * self._ndim)
|
|
return ndi.binary_fill_holes(self.image, structure)
|
|
|
|
@property
|
|
@_cached
|
|
def image(self):
|
|
return self._label_image[self.slice] == self.label
|
|
|
|
@property
|
|
@_cached
|
|
def inertia_tensor(self):
|
|
mu = self.moments_central
|
|
return _moments.inertia_tensor(self.image, mu)
|
|
|
|
@property
|
|
@_cached
|
|
def inertia_tensor_eigvals(self):
|
|
return _moments.inertia_tensor_eigvals(self.image,
|
|
T=self.inertia_tensor)
|
|
|
|
@property
|
|
@_cached
|
|
def intensity_image(self):
|
|
if self._intensity_image is None:
|
|
raise AttributeError('No intensity image specified.')
|
|
image = (
|
|
self.image
|
|
if not self._multichannel
|
|
else np.expand_dims(self.image, self._ndim)
|
|
)
|
|
return self._intensity_image[self.slice] * image
|
|
|
|
def _intensity_image_double(self):
|
|
return self.intensity_image.astype(np.double)
|
|
|
|
@property
|
|
def local_centroid(self):
|
|
M = self.moments
|
|
return tuple(M[tuple(np.eye(self._ndim, dtype=int))] /
|
|
M[(0,) * self._ndim])
|
|
|
|
@property
|
|
def max_intensity(self):
|
|
return np.max(self.intensity_image[self.image], axis=0)
|
|
|
|
@property
|
|
def mean_intensity(self):
|
|
return np.mean(self.intensity_image[self.image], axis=0)
|
|
|
|
@property
|
|
def min_intensity(self):
|
|
return np.min(self.intensity_image[self.image], axis=0)
|
|
|
|
@property
|
|
def major_axis_length(self):
|
|
l1 = self.inertia_tensor_eigvals[0]
|
|
return 4 * sqrt(l1)
|
|
|
|
@property
|
|
def minor_axis_length(self):
|
|
l2 = self.inertia_tensor_eigvals[-1]
|
|
return 4 * sqrt(l2)
|
|
|
|
@property
|
|
@_cached
|
|
def moments(self):
|
|
M = _moments.moments(self.image.astype(np.uint8), 3)
|
|
return M
|
|
|
|
@property
|
|
@_cached
|
|
def moments_central(self):
|
|
mu = _moments.moments_central(self.image.astype(np.uint8),
|
|
self.local_centroid, order=3)
|
|
return mu
|
|
|
|
@property
|
|
@only2d
|
|
def moments_hu(self):
|
|
return _moments.moments_hu(self.moments_normalized)
|
|
|
|
@property
|
|
@_cached
|
|
def moments_normalized(self):
|
|
return _moments.moments_normalized(self.moments_central, 3)
|
|
|
|
@property
|
|
@only2d
|
|
def orientation(self):
|
|
a, b, b, c = self.inertia_tensor.flat
|
|
if a - c == 0:
|
|
if b < 0:
|
|
return -PI / 4.
|
|
else:
|
|
return PI / 4.
|
|
else:
|
|
return 0.5 * atan2(-2 * b, c - a)
|
|
|
|
@property
|
|
@only2d
|
|
def perimeter(self):
|
|
return perimeter(self.image, 4)
|
|
|
|
@property
|
|
@only2d
|
|
def perimeter_crofton(self):
|
|
return perimeter_crofton(self.image, 4)
|
|
|
|
@property
|
|
def solidity(self):
|
|
return self.area / self.convex_area
|
|
|
|
@property
|
|
def weighted_centroid(self):
|
|
ctr = self.weighted_local_centroid
|
|
return tuple(idx + slc.start
|
|
for idx, slc in zip(ctr, self.slice))
|
|
|
|
@property
|
|
def weighted_local_centroid(self):
|
|
M = self.weighted_moments
|
|
return (M[tuple(np.eye(self._ndim, dtype=int))] /
|
|
M[(0,) * self._ndim])
|
|
|
|
@property
|
|
@_cached
|
|
def weighted_moments(self):
|
|
image = self._intensity_image_double()
|
|
if self._multichannel:
|
|
moments = np.stack(
|
|
[_moments.moments(image[..., i], order=3)
|
|
for i in range(image.shape[-1])],
|
|
axis=-1,
|
|
)
|
|
else:
|
|
moments = _moments.moments(image, order=3)
|
|
return moments
|
|
|
|
@property
|
|
@_cached
|
|
def weighted_moments_central(self):
|
|
ctr = self.weighted_local_centroid
|
|
image = self._intensity_image_double()
|
|
if self._multichannel:
|
|
moments_list = [
|
|
_moments.moments_central(
|
|
image[..., i], center=ctr[..., i], order=3
|
|
)
|
|
for i in range(image.shape[-1])
|
|
]
|
|
moments = np.stack(moments_list, axis=-1)
|
|
else:
|
|
moments = _moments.moments_central(image, ctr, order=3)
|
|
return moments
|
|
|
|
@property
|
|
@only2d
|
|
def weighted_moments_hu(self):
|
|
nu = self.weighted_moments_normalized
|
|
if self._multichannel:
|
|
nchannels = self._intensity_image.shape[-1]
|
|
return np.stack(
|
|
[_moments.moments_hu(nu[..., i]) for i in range(nchannels)],
|
|
axis=-1,
|
|
)
|
|
else:
|
|
return _moments.moments_hu(nu)
|
|
|
|
@property
|
|
@_cached
|
|
def weighted_moments_normalized(self):
|
|
mu = self.weighted_moments_central
|
|
if self._multichannel:
|
|
nchannels = self._intensity_image.shape[-1]
|
|
return np.stack(
|
|
[_moments.moments_normalized(mu[..., i], order=3)
|
|
for i in range(nchannels)],
|
|
axis=-1,
|
|
)
|
|
else:
|
|
return _moments.moments_normalized(mu, order=3)
|
|
return _moments.moments_normalized(self.weighted_moments_central, 3)
|
|
|
|
def __iter__(self):
|
|
props = PROP_VALS
|
|
|
|
if self._intensity_image is None:
|
|
unavailable_props = ('intensity_image',
|
|
'max_intensity',
|
|
'mean_intensity',
|
|
'min_intensity',
|
|
'weighted_moments',
|
|
'weighted_moments_central',
|
|
'weighted_centroid',
|
|
'weighted_local_centroid',
|
|
'weighted_moments_hu',
|
|
'weighted_moments_normalized')
|
|
|
|
props = props.difference(unavailable_props)
|
|
|
|
return iter(sorted(props))
|
|
|
|
def __getitem__(self, key):
|
|
value = getattr(self, key, None)
|
|
if value is not None:
|
|
return value
|
|
else: # backwards compatibility
|
|
return getattr(self, PROPS[key])
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, RegionProperties):
|
|
return False
|
|
|
|
for key in PROP_VALS:
|
|
try:
|
|
# so that NaNs are equal
|
|
np.testing.assert_equal(getattr(self, key, None),
|
|
getattr(other, key, None))
|
|
except AssertionError:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
# For compatibility with code written prior to 0.16
|
|
_RegionProperties = RegionProperties
|
|
|
|
|
|
def _props_to_dict(regions, properties=('label', 'bbox'), separator='-'):
|
|
"""Convert image region properties list into a column dictionary.
|
|
|
|
Parameters
|
|
----------
|
|
regions : (N,) list
|
|
List of RegionProperties objects as returned by :func:`regionprops`.
|
|
properties : tuple or list of str, optional
|
|
Properties that will be included in the resulting dictionary
|
|
For a list of available properties, please see :func:`regionprops`.
|
|
Users should remember to add "label" to keep track of region
|
|
identities.
|
|
separator : str, optional
|
|
For non-scalar properties not listed in OBJECT_COLUMNS, each element
|
|
will appear in its own column, with the index of that element separated
|
|
from the property name by this separator. For example, the inertia
|
|
tensor of a 2D region will appear in four columns:
|
|
``inertia_tensor-0-0``, ``inertia_tensor-0-1``, ``inertia_tensor-1-0``,
|
|
and ``inertia_tensor-1-1`` (where the separator is ``-``).
|
|
|
|
Object columns are those that cannot be split in this way because the
|
|
number of columns would change depending on the object. For example,
|
|
``image`` and ``coords``.
|
|
|
|
Returns
|
|
-------
|
|
out_dict : dict
|
|
Dictionary mapping property names to an array of values of that
|
|
property, one value per region. This dictionary can be used as input to
|
|
pandas ``DataFrame`` to map property names to columns in the frame and
|
|
regions to rows.
|
|
|
|
Notes
|
|
-----
|
|
Each column contains either a scalar property, an object property, or an
|
|
element in a multidimensional array.
|
|
|
|
Properties with scalar values for each region, such as "eccentricity", will
|
|
appear as a float or int array with that property name as key.
|
|
|
|
Multidimensional properties *of fixed size* for a given image dimension,
|
|
such as "centroid" (every centroid will have three elements in a 3D image,
|
|
no matter the region size), will be split into that many columns, with the
|
|
name {property_name}{separator}{element_num} (for 1D properties),
|
|
{property_name}{separator}{elem_num0}{separator}{elem_num1} (for 2D
|
|
properties), and so on.
|
|
|
|
For multidimensional properties that don't have a fixed size, such as
|
|
"image" (the image of a region varies in size depending on the region
|
|
size), an object array will be used, with the corresponding property name
|
|
as the key.
|
|
|
|
Examples
|
|
--------
|
|
>>> from skimage import data, util, measure
|
|
>>> image = data.coins()
|
|
>>> label_image = measure.label(image > 110, connectivity=image.ndim)
|
|
>>> proplist = regionprops(label_image, image)
|
|
>>> props = _props_to_dict(proplist, properties=['label', 'inertia_tensor',
|
|
... 'inertia_tensor_eigvals'])
|
|
>>> props # doctest: +ELLIPSIS +SKIP
|
|
{'label': array([ 1, 2, ...]), ...
|
|
'inertia_tensor-0-0': array([ 4.012...e+03, 8.51..., ...]), ...
|
|
...,
|
|
'inertia_tensor_eigvals-1': array([ 2.67...e+02, 2.83..., ...])}
|
|
|
|
The resulting dictionary can be directly passed to pandas, if installed, to
|
|
obtain a clean DataFrame:
|
|
|
|
>>> import pandas as pd # doctest: +SKIP
|
|
>>> data = pd.DataFrame(props) # doctest: +SKIP
|
|
>>> data.head() # doctest: +SKIP
|
|
label inertia_tensor-0-0 ... inertia_tensor_eigvals-1
|
|
0 1 4012.909888 ... 267.065503
|
|
1 2 8.514739 ... 2.834806
|
|
2 3 0.666667 ... 0.000000
|
|
3 4 0.000000 ... 0.000000
|
|
4 5 0.222222 ... 0.111111
|
|
|
|
"""
|
|
|
|
out = {}
|
|
n = len(regions)
|
|
for prop in properties:
|
|
r = regions[0]
|
|
rp = getattr(r, prop)
|
|
if prop in COL_DTYPES:
|
|
dtype = COL_DTYPES[prop]
|
|
else:
|
|
func = r._extra_properties[prop]
|
|
dtype = _infer_regionprop_dtype(
|
|
func,
|
|
intensity=r._intensity_image is not None,
|
|
ndim=r.image.ndim,
|
|
)
|
|
column_buffer = np.zeros(n, dtype=dtype)
|
|
|
|
# scalars and objects are dedicated one column per prop
|
|
# array properties are raveled into multiple columns
|
|
# for more info, refer to notes 1
|
|
if np.isscalar(rp) or prop in OBJECT_COLUMNS or dtype is np.object_:
|
|
for i in range(n):
|
|
column_buffer[i] = regions[i][prop]
|
|
out[prop] = np.copy(column_buffer)
|
|
else:
|
|
if isinstance(rp, np.ndarray):
|
|
shape = rp.shape
|
|
else:
|
|
shape = (len(rp),)
|
|
|
|
for ind in np.ndindex(shape):
|
|
for k in range(n):
|
|
loc = ind if len(ind) > 1 else ind[0]
|
|
column_buffer[k] = regions[k][prop][loc]
|
|
modified_prop = separator.join(map(str, (prop,) + ind))
|
|
out[modified_prop] = np.copy(column_buffer)
|
|
return out
|
|
|
|
|
|
def regionprops_table(label_image, intensity_image=None,
|
|
properties=('label', 'bbox'),
|
|
*,
|
|
cache=True, separator='-', extra_properties=None):
|
|
"""Compute image properties and return them as a pandas-compatible table.
|
|
|
|
The table is a dictionary mapping column names to value arrays. See Notes
|
|
section below for details.
|
|
|
|
.. versionadded:: 0.16
|
|
|
|
Parameters
|
|
----------
|
|
label_image : (N, M[, P]) ndarray
|
|
Labeled input image. Labels with value 0 are ignored.
|
|
intensity_image : (M, N[, P][, C]) ndarray, optional
|
|
Intensity (i.e., input) image with same size as labeled image, plus
|
|
optionally an extra dimension for multichannel data.
|
|
Default is None.
|
|
|
|
.. versionchanged:: 0.18.0
|
|
The ability to provide an extra dimension for channels was added.
|
|
properties : tuple or list of str, optional
|
|
Properties that will be included in the resulting dictionary
|
|
For a list of available properties, please see :func:`regionprops`.
|
|
Users should remember to add "label" to keep track of region
|
|
identities.
|
|
cache : bool, optional
|
|
Determine whether to cache calculated properties. The computation is
|
|
much faster for cached properties, whereas the memory consumption
|
|
increases.
|
|
separator : str, optional
|
|
For non-scalar properties not listed in OBJECT_COLUMNS, each element
|
|
will appear in its own column, with the index of that element separated
|
|
from the property name by this separator. For example, the inertia
|
|
tensor of a 2D region will appear in four columns:
|
|
``inertia_tensor-0-0``, ``inertia_tensor-0-1``, ``inertia_tensor-1-0``,
|
|
and ``inertia_tensor-1-1`` (where the separator is ``-``).
|
|
|
|
Object columns are those that cannot be split in this way because the
|
|
number of columns would change depending on the object. For example,
|
|
``image`` and ``coords``.
|
|
extra_properties : Iterable of callables
|
|
Add extra property computation functions that are not included with
|
|
skimage. The name of the property is derived from the function name,
|
|
the dtype is inferred by calling the function on a small sample.
|
|
If the name of an extra property clashes with the name of an existing
|
|
property the extra property wil not be visible and a UserWarning is
|
|
issued. A property computation function must take a region mask as its
|
|
first argument. If the property requires an intensity image, it must
|
|
accept the intensity image as the second argument.
|
|
|
|
Returns
|
|
-------
|
|
out_dict : dict
|
|
Dictionary mapping property names to an array of values of that
|
|
property, one value per region. This dictionary can be used as input to
|
|
pandas ``DataFrame`` to map property names to columns in the frame and
|
|
regions to rows. If the image has no regions,
|
|
the arrays will have length 0, but the correct type.
|
|
|
|
Notes
|
|
-----
|
|
Each column contains either a scalar property, an object property, or an
|
|
element in a multidimensional array.
|
|
|
|
Properties with scalar values for each region, such as "eccentricity", will
|
|
appear as a float or int array with that property name as key.
|
|
|
|
Multidimensional properties *of fixed size* for a given image dimension,
|
|
such as "centroid" (every centroid will have three elements in a 3D image,
|
|
no matter the region size), will be split into that many columns, with the
|
|
name {property_name}{separator}{element_num} (for 1D properties),
|
|
{property_name}{separator}{elem_num0}{separator}{elem_num1} (for 2D
|
|
properties), and so on.
|
|
|
|
For multidimensional properties that don't have a fixed size, such as
|
|
"image" (the image of a region varies in size depending on the region
|
|
size), an object array will be used, with the corresponding property name
|
|
as the key.
|
|
|
|
Examples
|
|
--------
|
|
>>> from skimage import data, util, measure
|
|
>>> image = data.coins()
|
|
>>> label_image = measure.label(image > 110, connectivity=image.ndim)
|
|
>>> props = measure.regionprops_table(label_image, image,
|
|
... properties=['label', 'inertia_tensor',
|
|
... 'inertia_tensor_eigvals'])
|
|
>>> props # doctest: +ELLIPSIS +SKIP
|
|
{'label': array([ 1, 2, ...]), ...
|
|
'inertia_tensor-0-0': array([ 4.012...e+03, 8.51..., ...]), ...
|
|
...,
|
|
'inertia_tensor_eigvals-1': array([ 2.67...e+02, 2.83..., ...])}
|
|
|
|
The resulting dictionary can be directly passed to pandas, if installed, to
|
|
obtain a clean DataFrame:
|
|
|
|
>>> import pandas as pd # doctest: +SKIP
|
|
>>> data = pd.DataFrame(props) # doctest: +SKIP
|
|
>>> data.head() # doctest: +SKIP
|
|
label inertia_tensor-0-0 ... inertia_tensor_eigvals-1
|
|
0 1 4012.909888 ... 267.065503
|
|
1 2 8.514739 ... 2.834806
|
|
2 3 0.666667 ... 0.000000
|
|
3 4 0.000000 ... 0.000000
|
|
4 5 0.222222 ... 0.111111
|
|
|
|
[5 rows x 7 columns]
|
|
|
|
If we want to measure a feature that does not come as a built-in
|
|
property, we can define custom functions and pass them as
|
|
``extra_properties``. For example, we can create a custom function
|
|
that measures the intensity quartiles in a region:
|
|
|
|
>>> from skimage import data, util, measure
|
|
>>> import numpy as np
|
|
>>> def quartiles(regionmask, intensity):
|
|
... return np.percentile(intensity[regionmask], q=(25, 50, 75))
|
|
>>>
|
|
>>> image = data.coins()
|
|
>>> label_image = measure.label(image > 110, connectivity=image.ndim)
|
|
>>> props = measure.regionprops_table(label_image, intensity_image=image,
|
|
... properties=('label',),
|
|
... extra_properties=(quartiles,))
|
|
>>> import pandas as pd # doctest: +SKIP
|
|
>>> pd.DataFrame(props).head() # doctest: +SKIP
|
|
label quartiles-0 quartiles-1 quartiles-2
|
|
0 1 117.00 123.0 130.0
|
|
1 2 111.25 112.0 114.0
|
|
2 3 111.00 111.0 111.0
|
|
3 4 111.00 111.5 112.5
|
|
4 5 112.50 113.0 114.0
|
|
|
|
"""
|
|
regions = regionprops(label_image, intensity_image=intensity_image,
|
|
cache=cache, extra_properties=extra_properties)
|
|
if extra_properties is not None:
|
|
properties = (
|
|
list(properties) + [prop.__name__ for prop in extra_properties]
|
|
)
|
|
if len(regions) == 0:
|
|
ndim = label_image.ndim
|
|
label_image = np.zeros((3,) * ndim, dtype=int)
|
|
label_image[(1,) * ndim] = 1
|
|
if intensity_image is not None:
|
|
intensity_image = np.zeros(
|
|
label_image.shape + intensity_image.shape[ndim:],
|
|
dtype=intensity_image.dtype
|
|
)
|
|
regions = regionprops(label_image, intensity_image=intensity_image,
|
|
cache=cache, extra_properties=extra_properties)
|
|
|
|
out_d = _props_to_dict(regions, properties=properties,
|
|
separator=separator)
|
|
return {k: v[:0] for k, v in out_d.items()}
|
|
|
|
return _props_to_dict(
|
|
regions, properties=properties, separator=separator
|
|
)
|
|
|
|
|
|
def regionprops(label_image, intensity_image=None, cache=True,
|
|
coordinates=None, *, extra_properties=None):
|
|
r"""Measure properties of labeled image regions.
|
|
|
|
Parameters
|
|
----------
|
|
label_image : (M, N[, P]) ndarray
|
|
Labeled input image. Labels with value 0 are ignored.
|
|
|
|
.. versionchanged:: 0.14.1
|
|
Previously, ``label_image`` was processed by ``numpy.squeeze`` and
|
|
so any number of singleton dimensions was allowed. This resulted in
|
|
inconsistent handling of images with singleton dimensions. To
|
|
recover the old behaviour, use
|
|
``regionprops(np.squeeze(label_image), ...)``.
|
|
intensity_image : (M, N[, P][, C]) ndarray, optional
|
|
Intensity (i.e., input) image with same size as labeled image, plus
|
|
optionally an extra dimension for multichannel data.
|
|
Default is None.
|
|
|
|
.. versionchanged:: 0.18.0
|
|
The ability to provide an extra dimension for channels was added.
|
|
cache : bool, optional
|
|
Determine whether to cache calculated properties. The computation is
|
|
much faster for cached properties, whereas the memory consumption
|
|
increases.
|
|
coordinates : DEPRECATED
|
|
This argument is deprecated and will be removed in a future version
|
|
of scikit-image.
|
|
|
|
See :ref:`Coordinate conventions <numpy-images-coordinate-conventions>`
|
|
for more details.
|
|
|
|
.. deprecated:: 0.16.0
|
|
Use "rc" coordinates everywhere. It may be sufficient to call
|
|
``numpy.transpose`` on your label image to get the same values as
|
|
0.15 and earlier. However, for some properties, the transformation
|
|
will be less trivial. For example, the new orientation is
|
|
:math:`\frac{\pi}{2}` plus the old orientation.
|
|
extra_properties : Iterable of callables
|
|
Add extra property computation functions that are not included with
|
|
skimage. The name of the property is derived from the function name,
|
|
the dtype is inferred by calling the function on a small sample.
|
|
If the name of an extra property clashes with the name of an existing
|
|
property the extra property wil not be visible and a UserWarning is
|
|
issued. A property computation function must take a region mask as its
|
|
first argument. If the property requires an intensity image, it must
|
|
accept the intensity image as the second argument.
|
|
|
|
Returns
|
|
-------
|
|
properties : list of RegionProperties
|
|
Each item describes one labeled region, and can be accessed using the
|
|
attributes listed below.
|
|
|
|
Notes
|
|
-----
|
|
The following properties can be accessed as attributes or keys:
|
|
|
|
**area** : int
|
|
Number of pixels of the region.
|
|
**bbox** : tuple
|
|
Bounding box ``(min_row, min_col, max_row, max_col)``.
|
|
Pixels belonging to the bounding box are in the half-open interval
|
|
``[min_row; max_row)`` and ``[min_col; max_col)``.
|
|
**bbox_area** : int
|
|
Number of pixels of bounding box.
|
|
**centroid** : array
|
|
Centroid coordinate tuple ``(row, col)``.
|
|
**convex_area** : int
|
|
Number of pixels of convex hull image, which is the smallest convex
|
|
polygon that encloses the region.
|
|
**convex_image** : (H, J) ndarray
|
|
Binary convex hull image which has the same size as bounding box.
|
|
**coords** : (N, 2) ndarray
|
|
Coordinate list ``(row, col)`` of the region.
|
|
**eccentricity** : float
|
|
Eccentricity of the ellipse that has the same second-moments as the
|
|
region. The eccentricity is the ratio of the focal distance
|
|
(distance between focal points) over the major axis length.
|
|
The value is in the interval [0, 1).
|
|
When it is 0, the ellipse becomes a circle.
|
|
**equivalent_diameter** : float
|
|
The diameter of a circle with the same area as the region.
|
|
**euler_number** : int
|
|
Euler characteristic of the set of non-zero pixels.
|
|
Computed as number of connected components subtracted by number of
|
|
holes (input.ndim connectivity). In 3D, number of connected
|
|
components plus number of holes subtracted by number of tunnels.
|
|
**extent** : float
|
|
Ratio of pixels in the region to pixels in the total bounding box.
|
|
Computed as ``area / (rows * cols)``
|
|
**feret_diameter_max** : float
|
|
Maximum Feret's diameter computed as the longest distance between
|
|
points around a region's convex hull contour as determined by
|
|
``find_contours``. [5]_
|
|
**filled_area** : int
|
|
Number of pixels of the region will all the holes filled in. Describes
|
|
the area of the filled_image.
|
|
**filled_image** : (H, J) ndarray
|
|
Binary region image with filled holes which has the same size as
|
|
bounding box.
|
|
**image** : (H, J) ndarray
|
|
Sliced binary region image which has the same size as bounding box.
|
|
**inertia_tensor** : ndarray
|
|
Inertia tensor of the region for the rotation around its mass.
|
|
**inertia_tensor_eigvals** : tuple
|
|
The eigenvalues of the inertia tensor in decreasing order.
|
|
**intensity_image** : ndarray
|
|
Image inside region bounding box.
|
|
**label** : int
|
|
The label in the labeled input image.
|
|
**local_centroid** : array
|
|
Centroid coordinate tuple ``(row, col)``, relative to region bounding
|
|
box.
|
|
**major_axis_length** : float
|
|
The length of the major axis of the ellipse that has the same
|
|
normalized second central moments as the region.
|
|
**max_intensity** : float
|
|
Value with the greatest intensity in the region.
|
|
**mean_intensity** : float
|
|
Value with the mean intensity in the region.
|
|
**min_intensity** : float
|
|
Value with the least intensity in the region.
|
|
**minor_axis_length** : float
|
|
The length of the minor axis of the ellipse that has the same
|
|
normalized second central moments as the region.
|
|
**moments** : (3, 3) ndarray
|
|
Spatial moments up to 3rd order::
|
|
|
|
m_ij = sum{ array(row, col) * row^i * col^j }
|
|
|
|
where the sum is over the `row`, `col` coordinates of the region.
|
|
**moments_central** : (3, 3) ndarray
|
|
Central moments (translation invariant) up to 3rd order::
|
|
|
|
mu_ij = sum{ array(row, col) * (row - row_c)^i * (col - col_c)^j }
|
|
|
|
where the sum is over the `row`, `col` coordinates of the region,
|
|
and `row_c` and `col_c` are the coordinates of the region's centroid.
|
|
**moments_hu** : tuple
|
|
Hu moments (translation, scale and rotation invariant).
|
|
**moments_normalized** : (3, 3) ndarray
|
|
Normalized moments (translation and scale invariant) up to 3rd order::
|
|
|
|
nu_ij = mu_ij / m_00^[(i+j)/2 + 1]
|
|
|
|
where `m_00` is the zeroth spatial moment.
|
|
**orientation** : float
|
|
Angle between the 0th axis (rows) and the major
|
|
axis of the ellipse that has the same second moments as the region,
|
|
ranging from `-pi/2` to `pi/2` counter-clockwise.
|
|
**perimeter** : float
|
|
Perimeter of object which approximates the contour as a line
|
|
through the centers of border pixels using a 4-connectivity.
|
|
**perimeter_crofton** : float
|
|
Perimeter of object approximated by the Crofton formula in 4
|
|
directions.
|
|
**slice** : tuple of slices
|
|
A slice to extract the object from the source image.
|
|
**solidity** : float
|
|
Ratio of pixels in the region to pixels of the convex hull image.
|
|
**weighted_centroid** : array
|
|
Centroid coordinate tuple ``(row, col)`` weighted with intensity
|
|
image.
|
|
**weighted_local_centroid** : array
|
|
Centroid coordinate tuple ``(row, col)``, relative to region bounding
|
|
box, weighted with intensity image.
|
|
**weighted_moments** : (3, 3) ndarray
|
|
Spatial moments of intensity image up to 3rd order::
|
|
|
|
wm_ij = sum{ array(row, col) * row^i * col^j }
|
|
|
|
where the sum is over the `row`, `col` coordinates of the region.
|
|
**weighted_moments_central** : (3, 3) ndarray
|
|
Central moments (translation invariant) of intensity image up to
|
|
3rd order::
|
|
|
|
wmu_ij = sum{ array(row, col) * (row - row_c)^i * (col - col_c)^j }
|
|
|
|
where the sum is over the `row`, `col` coordinates of the region,
|
|
and `row_c` and `col_c` are the coordinates of the region's weighted
|
|
centroid.
|
|
**weighted_moments_hu** : tuple
|
|
Hu moments (translation, scale and rotation invariant) of intensity
|
|
image.
|
|
**weighted_moments_normalized** : (3, 3) ndarray
|
|
Normalized moments (translation and scale invariant) of intensity
|
|
image up to 3rd order::
|
|
|
|
wnu_ij = wmu_ij / wm_00^[(i+j)/2 + 1]
|
|
|
|
where ``wm_00`` is the zeroth spatial moment (intensity-weighted area).
|
|
|
|
Each region also supports iteration, so that you can do::
|
|
|
|
for prop in region:
|
|
print(prop, region[prop])
|
|
|
|
See Also
|
|
--------
|
|
label
|
|
|
|
References
|
|
----------
|
|
.. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
|
|
Core Algorithms. Springer-Verlag, London, 2009.
|
|
.. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
|
|
Berlin-Heidelberg, 6. edition, 2005.
|
|
.. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
|
|
Features, from Lecture notes in computer science, p. 676. Springer,
|
|
Berlin, 1993.
|
|
.. [4] https://en.wikipedia.org/wiki/Image_moment
|
|
.. [5] W. Pabst, E. Gregorová. Characterization of particles and particle
|
|
systems, pp. 27-28. ICT Prague, 2007.
|
|
https://old.vscht.cz/sil/keramika/Characterization_of_particles/CPPS%20_English%20version_.pdf
|
|
|
|
Examples
|
|
--------
|
|
>>> from skimage import data, util
|
|
>>> from skimage.measure import label, regionprops
|
|
>>> img = util.img_as_ubyte(data.coins()) > 110
|
|
>>> label_img = label(img, connectivity=img.ndim)
|
|
>>> props = regionprops(label_img)
|
|
>>> # centroid of first labeled object
|
|
>>> props[0].centroid
|
|
(22.72987986048314, 81.91228523446583)
|
|
>>> # centroid of first labeled object
|
|
>>> props[0]['centroid']
|
|
(22.72987986048314, 81.91228523446583)
|
|
|
|
Add custom measurements by passing functions as ``extra_properties``
|
|
|
|
>>> from skimage import data, util
|
|
>>> from skimage.measure import label, regionprops
|
|
>>> import numpy as np
|
|
>>> img = util.img_as_ubyte(data.coins()) > 110
|
|
>>> label_img = label(img, connectivity=img.ndim)
|
|
>>> def pixelcount(regionmask):
|
|
... return np.sum(regionmask)
|
|
>>> props = regionprops(label_img, extra_properties=(pixelcount,))
|
|
>>> props[0].pixelcount
|
|
7741
|
|
>>> props[1]['pixelcount']
|
|
42
|
|
|
|
"""
|
|
|
|
if label_image.ndim not in (2, 3):
|
|
raise TypeError('Only 2-D and 3-D images supported.')
|
|
|
|
if not np.issubdtype(label_image.dtype, np.integer):
|
|
if np.issubdtype(label_image.dtype, bool):
|
|
raise TypeError(
|
|
'Non-integer image types are ambiguous: '
|
|
'use skimage.measure.label to label the connected'
|
|
'components of label_image,'
|
|
'or label_image.astype(np.uint8) to interpret'
|
|
'the True values as a single label.')
|
|
else:
|
|
raise TypeError(
|
|
'Non-integer label_image types are ambiguous')
|
|
|
|
if coordinates is not None:
|
|
if coordinates == 'rc':
|
|
msg = ('The coordinates keyword argument to skimage.measure.'
|
|
'regionprops is deprecated. All features are now computed '
|
|
'in rc (row-column) coordinates. Please remove '
|
|
'`coordinates="rc"` from all calls to regionprops before '
|
|
'updating scikit-image.')
|
|
warn(msg, stacklevel=2, category=FutureWarning)
|
|
else:
|
|
msg = ('Values other than "rc" for the "coordinates" argument '
|
|
'to skimage.measure.regionprops are no longer supported. '
|
|
'You should update your code to use "rc" coordinates and '
|
|
'stop using the "coordinates" argument, or use skimage '
|
|
'version 0.15.x or earlier.')
|
|
raise ValueError(msg)
|
|
|
|
regions = []
|
|
|
|
objects = ndi.find_objects(label_image)
|
|
for i, sl in enumerate(objects):
|
|
if sl is None:
|
|
continue
|
|
|
|
label = i + 1
|
|
|
|
props = RegionProperties(sl, label, label_image, intensity_image,
|
|
cache, extra_properties=extra_properties)
|
|
regions.append(props)
|
|
|
|
return regions
|
|
|
|
|
|
def _parse_docs():
|
|
import re
|
|
import textwrap
|
|
|
|
doc = regionprops.__doc__ or ''
|
|
matches = re.finditer(r'\*\*(\w+)\*\* \:.*?\n(.*?)(?=\n [\*\S]+)',
|
|
doc, flags=re.DOTALL)
|
|
prop_doc = {m.group(1): textwrap.dedent(m.group(2)) for m in matches}
|
|
|
|
return prop_doc
|
|
|
|
|
|
def _install_properties_docs():
|
|
prop_doc = _parse_docs()
|
|
|
|
for p in [member for member in dir(RegionProperties)
|
|
if not member.startswith('_')]:
|
|
getattr(RegionProperties, p).__doc__ = prop_doc[p]
|
|
|
|
|
|
if __debug__:
|
|
# don't install docstrings when in optimized/non-debug mode
|
|
_install_properties_docs()
|