566 lines
19 KiB
Python
566 lines
19 KiB
Python
"""
|
|
Tests specific to the patches module.
|
|
"""
|
|
import numpy as np
|
|
from numpy.testing import assert_almost_equal, assert_array_equal
|
|
import pytest
|
|
|
|
from matplotlib.patches import Polygon, Rectangle, FancyArrowPatch
|
|
from matplotlib.testing.decorators import image_comparison, check_figures_equal
|
|
from matplotlib.transforms import Bbox
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib import (
|
|
collections as mcollections, colors as mcolors, patches as mpatches,
|
|
path as mpath, style as mstyle, transforms as mtransforms)
|
|
|
|
import sys
|
|
on_win = (sys.platform == 'win32')
|
|
|
|
|
|
def test_Polygon_close():
|
|
#: GitHub issue #1018 identified a bug in the Polygon handling
|
|
#: of the closed attribute; the path was not getting closed
|
|
#: when set_xy was used to set the vertices.
|
|
|
|
# open set of vertices:
|
|
xy = [[0, 0], [0, 1], [1, 1]]
|
|
# closed set:
|
|
xyclosed = xy + [[0, 0]]
|
|
|
|
# start with open path and close it:
|
|
p = Polygon(xy, closed=True)
|
|
assert_array_equal(p.get_xy(), xyclosed)
|
|
p.set_xy(xy)
|
|
assert_array_equal(p.get_xy(), xyclosed)
|
|
|
|
# start with closed path and open it:
|
|
p = Polygon(xyclosed, closed=False)
|
|
assert_array_equal(p.get_xy(), xy)
|
|
p.set_xy(xyclosed)
|
|
assert_array_equal(p.get_xy(), xy)
|
|
|
|
# start with open path and leave it open:
|
|
p = Polygon(xy, closed=False)
|
|
assert_array_equal(p.get_xy(), xy)
|
|
p.set_xy(xy)
|
|
assert_array_equal(p.get_xy(), xy)
|
|
|
|
# start with closed path and leave it closed:
|
|
p = Polygon(xyclosed, closed=True)
|
|
assert_array_equal(p.get_xy(), xyclosed)
|
|
p.set_xy(xyclosed)
|
|
assert_array_equal(p.get_xy(), xyclosed)
|
|
|
|
|
|
def test_rotate_rect():
|
|
loc = np.asarray([1.0, 2.0])
|
|
width = 2
|
|
height = 3
|
|
angle = 30.0
|
|
|
|
# A rotated rectangle
|
|
rect1 = Rectangle(loc, width, height, angle=angle)
|
|
|
|
# A non-rotated rectangle
|
|
rect2 = Rectangle(loc, width, height)
|
|
|
|
# Set up an explicit rotation matrix (in radians)
|
|
angle_rad = np.pi * angle / 180.0
|
|
rotation_matrix = np.array([[np.cos(angle_rad), -np.sin(angle_rad)],
|
|
[np.sin(angle_rad), np.cos(angle_rad)]])
|
|
|
|
# Translate to origin, rotate each vertex, and then translate back
|
|
new_verts = np.inner(rotation_matrix, rect2.get_verts() - loc).T + loc
|
|
|
|
# They should be the same
|
|
assert_almost_equal(rect1.get_verts(), new_verts)
|
|
|
|
|
|
def test_negative_rect():
|
|
# These two rectangles have the same vertices, but starting from a
|
|
# different point. (We also drop the last vertex, which is a duplicate.)
|
|
pos_vertices = Rectangle((-3, -2), 3, 2).get_verts()[:-1]
|
|
neg_vertices = Rectangle((0, 0), -3, -2).get_verts()[:-1]
|
|
assert_array_equal(np.roll(neg_vertices, 2, 0), pos_vertices)
|
|
|
|
|
|
@image_comparison(['clip_to_bbox'])
|
|
def test_clip_to_bbox():
|
|
fig = plt.figure()
|
|
|
|
ax = fig.add_subplot(111)
|
|
ax.set_xlim([-18, 20])
|
|
ax.set_ylim([-150, 100])
|
|
|
|
path = mpath.Path.unit_regular_star(8).deepcopy()
|
|
path.vertices *= [10, 100]
|
|
path.vertices -= [5, 25]
|
|
|
|
path2 = mpath.Path.unit_circle().deepcopy()
|
|
path2.vertices *= [10, 100]
|
|
path2.vertices += [10, -25]
|
|
|
|
combined = mpath.Path.make_compound_path(path, path2)
|
|
|
|
patch = mpatches.PathPatch(
|
|
combined, alpha=0.5, facecolor='coral', edgecolor='none')
|
|
ax.add_patch(patch)
|
|
|
|
bbox = mtransforms.Bbox([[-12, -77.5], [50, -110]])
|
|
result_path = combined.clip_to_bbox(bbox)
|
|
result_patch = mpatches.PathPatch(
|
|
result_path, alpha=0.5, facecolor='green', lw=4, edgecolor='black')
|
|
|
|
ax.add_patch(result_patch)
|
|
|
|
|
|
@image_comparison(['patch_alpha_coloring'], remove_text=True)
|
|
def test_patch_alpha_coloring():
|
|
"""
|
|
Test checks that the patch and collection are rendered with the specified
|
|
alpha values in their facecolor and edgecolor.
|
|
"""
|
|
star = mpath.Path.unit_regular_star(6)
|
|
circle = mpath.Path.unit_circle()
|
|
# concatenate the star with an internal cutout of the circle
|
|
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
|
|
codes = np.concatenate([circle.codes, star.codes])
|
|
cut_star1 = mpath.Path(verts, codes)
|
|
cut_star2 = mpath.Path(verts + 1, codes)
|
|
|
|
ax = plt.axes()
|
|
patch = mpatches.PathPatch(cut_star1,
|
|
linewidth=5, linestyle='dashdot',
|
|
facecolor=(1, 0, 0, 0.5),
|
|
edgecolor=(0, 0, 1, 0.75))
|
|
ax.add_patch(patch)
|
|
|
|
col = mcollections.PathCollection([cut_star2],
|
|
linewidth=5, linestyles='dashdot',
|
|
facecolor=(1, 0, 0, 0.5),
|
|
edgecolor=(0, 0, 1, 0.75))
|
|
ax.add_collection(col)
|
|
|
|
ax.set_xlim([-1, 2])
|
|
ax.set_ylim([-1, 2])
|
|
|
|
|
|
@image_comparison(['patch_alpha_override'], remove_text=True)
|
|
def test_patch_alpha_override():
|
|
#: Test checks that specifying an alpha attribute for a patch or
|
|
#: collection will override any alpha component of the facecolor
|
|
#: or edgecolor.
|
|
star = mpath.Path.unit_regular_star(6)
|
|
circle = mpath.Path.unit_circle()
|
|
# concatenate the star with an internal cutout of the circle
|
|
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
|
|
codes = np.concatenate([circle.codes, star.codes])
|
|
cut_star1 = mpath.Path(verts, codes)
|
|
cut_star2 = mpath.Path(verts + 1, codes)
|
|
|
|
ax = plt.axes()
|
|
patch = mpatches.PathPatch(cut_star1,
|
|
linewidth=5, linestyle='dashdot',
|
|
alpha=0.25,
|
|
facecolor=(1, 0, 0, 0.5),
|
|
edgecolor=(0, 0, 1, 0.75))
|
|
ax.add_patch(patch)
|
|
|
|
col = mcollections.PathCollection([cut_star2],
|
|
linewidth=5, linestyles='dashdot',
|
|
alpha=0.25,
|
|
facecolor=(1, 0, 0, 0.5),
|
|
edgecolor=(0, 0, 1, 0.75))
|
|
ax.add_collection(col)
|
|
|
|
ax.set_xlim([-1, 2])
|
|
ax.set_ylim([-1, 2])
|
|
|
|
|
|
@pytest.mark.style('default')
|
|
def test_patch_color_none():
|
|
# Make sure the alpha kwarg does not override 'none' facecolor.
|
|
# Addresses issue #7478.
|
|
c = plt.Circle((0, 0), 1, facecolor='none', alpha=1)
|
|
assert c.get_facecolor()[0] == 0
|
|
|
|
|
|
@image_comparison(['patch_custom_linestyle'], remove_text=True)
|
|
def test_patch_custom_linestyle():
|
|
#: A test to check that patches and collections accept custom dash
|
|
#: patterns as linestyle and that they display correctly.
|
|
star = mpath.Path.unit_regular_star(6)
|
|
circle = mpath.Path.unit_circle()
|
|
# concatenate the star with an internal cutout of the circle
|
|
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
|
|
codes = np.concatenate([circle.codes, star.codes])
|
|
cut_star1 = mpath.Path(verts, codes)
|
|
cut_star2 = mpath.Path(verts + 1, codes)
|
|
|
|
ax = plt.axes()
|
|
patch = mpatches.PathPatch(
|
|
cut_star1,
|
|
linewidth=5, linestyle=(0, (5, 7, 10, 7)),
|
|
facecolor=(1, 0, 0), edgecolor=(0, 0, 1))
|
|
ax.add_patch(patch)
|
|
|
|
col = mcollections.PathCollection(
|
|
[cut_star2],
|
|
linewidth=5, linestyles=[(0, (5, 7, 10, 7))],
|
|
facecolor=(1, 0, 0), edgecolor=(0, 0, 1))
|
|
ax.add_collection(col)
|
|
|
|
ax.set_xlim([-1, 2])
|
|
ax.set_ylim([-1, 2])
|
|
|
|
|
|
def test_patch_linestyle_accents():
|
|
#: Test if linestyle can also be specified with short mnemonics like "--"
|
|
#: c.f. GitHub issue #2136
|
|
star = mpath.Path.unit_regular_star(6)
|
|
circle = mpath.Path.unit_circle()
|
|
# concatenate the star with an internal cutout of the circle
|
|
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
|
|
codes = np.concatenate([circle.codes, star.codes])
|
|
|
|
linestyles = ["-", "--", "-.", ":",
|
|
"solid", "dashed", "dashdot", "dotted"]
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(1, 1, 1)
|
|
for i, ls in enumerate(linestyles):
|
|
star = mpath.Path(verts + i, codes)
|
|
patch = mpatches.PathPatch(star,
|
|
linewidth=3, linestyle=ls,
|
|
facecolor=(1, 0, 0),
|
|
edgecolor=(0, 0, 1))
|
|
ax.add_patch(patch)
|
|
|
|
ax.set_xlim([-1, i + 1])
|
|
ax.set_ylim([-1, i + 1])
|
|
fig.canvas.draw()
|
|
|
|
|
|
def test_wedge_movement():
|
|
param_dict = {'center': ((0, 0), (1, 1), 'set_center'),
|
|
'r': (5, 8, 'set_radius'),
|
|
'width': (2, 3, 'set_width'),
|
|
'theta1': (0, 30, 'set_theta1'),
|
|
'theta2': (45, 50, 'set_theta2')}
|
|
|
|
init_args = {k: v[0] for k, v in param_dict.items()}
|
|
|
|
w = mpatches.Wedge(**init_args)
|
|
for attr, (old_v, new_v, func) in param_dict.items():
|
|
assert getattr(w, attr) == old_v
|
|
getattr(w, func)(new_v)
|
|
assert getattr(w, attr) == new_v
|
|
|
|
|
|
# png needs tol>=0.06, pdf tol>=1.617
|
|
@image_comparison(['wedge_range'], remove_text=True, tol=1.65 if on_win else 0)
|
|
def test_wedge_range():
|
|
ax = plt.axes()
|
|
|
|
t1 = 2.313869244286224
|
|
|
|
args = [[52.31386924, 232.31386924],
|
|
[52.313869244286224, 232.31386924428622],
|
|
[t1, t1 + 180.0],
|
|
[0, 360],
|
|
[90, 90 + 360],
|
|
[-180, 180],
|
|
[0, 380],
|
|
[45, 46],
|
|
[46, 45]]
|
|
|
|
for i, (theta1, theta2) in enumerate(args):
|
|
x = i % 3
|
|
y = i // 3
|
|
|
|
wedge = mpatches.Wedge((x * 3, y * 3), 1, theta1, theta2,
|
|
facecolor='none', edgecolor='k', lw=3)
|
|
|
|
ax.add_artist(wedge)
|
|
|
|
ax.set_xlim([-2, 8])
|
|
ax.set_ylim([-2, 9])
|
|
|
|
|
|
def test_patch_str():
|
|
"""
|
|
Check that patches have nice and working `str` representation.
|
|
|
|
Note that the logic is that `__str__` is defined such that:
|
|
str(eval(str(p))) == str(p)
|
|
"""
|
|
p = mpatches.Circle(xy=(1, 2), radius=3)
|
|
assert str(p) == 'Circle(xy=(1, 2), radius=3)'
|
|
|
|
p = mpatches.Ellipse(xy=(1, 2), width=3, height=4, angle=5)
|
|
assert str(p) == 'Ellipse(xy=(1, 2), width=3, height=4, angle=5)'
|
|
|
|
p = mpatches.Rectangle(xy=(1, 2), width=3, height=4, angle=5)
|
|
assert str(p) == 'Rectangle(xy=(1, 2), width=3, height=4, angle=5)'
|
|
|
|
p = mpatches.Wedge(center=(1, 2), r=3, theta1=4, theta2=5, width=6)
|
|
assert str(p) == 'Wedge(center=(1, 2), r=3, theta1=4, theta2=5, width=6)'
|
|
|
|
p = mpatches.Arc(xy=(1, 2), width=3, height=4, angle=5, theta1=6, theta2=7)
|
|
expected = 'Arc(xy=(1, 2), width=3, height=4, angle=5, theta1=6, theta2=7)'
|
|
assert str(p) == expected
|
|
|
|
p = mpatches.RegularPolygon((1, 2), 20, radius=5)
|
|
assert str(p) == "RegularPolygon((1, 2), 20, radius=5, orientation=0)"
|
|
|
|
p = mpatches.CirclePolygon(xy=(1, 2), radius=5, resolution=20)
|
|
assert str(p) == "CirclePolygon((1, 2), radius=5, resolution=20)"
|
|
|
|
p = mpatches.FancyBboxPatch((1, 2), width=3, height=4)
|
|
assert str(p) == "FancyBboxPatch((1, 2), width=3, height=4)"
|
|
|
|
# Further nice __str__ which cannot be `eval`uated:
|
|
path = mpath.Path([(1, 2), (2, 2), (1, 2)], closed=True)
|
|
p = mpatches.PathPatch(path)
|
|
assert str(p) == "PathPatch3((1, 2) ...)"
|
|
|
|
data = [[1, 2], [2, 2], [1, 2]]
|
|
p = mpatches.Polygon(data)
|
|
assert str(p) == "Polygon3((1, 2) ...)"
|
|
|
|
p = mpatches.FancyArrowPatch(path=path)
|
|
assert str(p)[:27] == "FancyArrowPatch(Path(array("
|
|
|
|
p = mpatches.FancyArrowPatch((1, 2), (3, 4))
|
|
assert str(p) == "FancyArrowPatch((1, 2)->(3, 4))"
|
|
|
|
p = mpatches.ConnectionPatch((1, 2), (3, 4), 'data')
|
|
assert str(p) == "ConnectionPatch((1, 2), (3, 4))"
|
|
|
|
s = mpatches.Shadow(p, 1, 1)
|
|
assert str(s) == "Shadow(ConnectionPatch((1, 2), (3, 4)))"
|
|
|
|
# Not testing Arrow, FancyArrow here
|
|
# because they seem to exist only for historical reasons.
|
|
|
|
|
|
@image_comparison(['multi_color_hatch'], remove_text=True, style='default')
|
|
def test_multi_color_hatch():
|
|
fig, ax = plt.subplots()
|
|
|
|
rects = ax.bar(range(5), range(1, 6))
|
|
for i, rect in enumerate(rects):
|
|
rect.set_facecolor('none')
|
|
rect.set_edgecolor('C{}'.format(i))
|
|
rect.set_hatch('/')
|
|
|
|
ax.autoscale_view()
|
|
ax.autoscale(False)
|
|
|
|
for i in range(5):
|
|
with mstyle.context({'hatch.color': 'C{}'.format(i)}):
|
|
r = Rectangle((i - .8 / 2, 5), .8, 1, hatch='//', fc='none')
|
|
ax.add_patch(r)
|
|
|
|
|
|
@image_comparison(['units_rectangle.png'])
|
|
def test_units_rectangle():
|
|
import matplotlib.testing.jpl_units as U
|
|
U.register()
|
|
|
|
p = mpatches.Rectangle((5*U.km, 6*U.km), 1*U.km, 2*U.km)
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.add_patch(p)
|
|
ax.set_xlim([4*U.km, 7*U.km])
|
|
ax.set_ylim([5*U.km, 9*U.km])
|
|
|
|
|
|
@image_comparison(['connection_patch.png'], style='mpl20', remove_text=True)
|
|
def test_connection_patch():
|
|
fig, (ax1, ax2) = plt.subplots(1, 2)
|
|
|
|
con = mpatches.ConnectionPatch(xyA=(0.1, 0.1), xyB=(0.9, 0.9),
|
|
coordsA='data', coordsB='data',
|
|
axesA=ax2, axesB=ax1,
|
|
arrowstyle="->")
|
|
ax2.add_artist(con)
|
|
|
|
xyA = (0.6, 1.0) # in axes coordinates
|
|
xyB = (0.0, 0.2) # x in axes coordinates, y in data coordinates
|
|
coordsA = "axes fraction"
|
|
coordsB = ax2.get_yaxis_transform()
|
|
con = mpatches.ConnectionPatch(xyA=xyA, xyB=xyB, coordsA=coordsA,
|
|
coordsB=coordsB, arrowstyle="-")
|
|
ax2.add_artist(con)
|
|
|
|
|
|
@check_figures_equal(extensions=["png"])
|
|
def test_connection_patch_fig(fig_test, fig_ref):
|
|
# Test that connection patch can be added as figure artist, and that figure
|
|
# pixels count negative values from the top right corner (this API may be
|
|
# changed in the future).
|
|
ax1, ax2 = fig_test.subplots(1, 2)
|
|
con = mpatches.ConnectionPatch(
|
|
xyA=(.3, .2), coordsA="data", axesA=ax1,
|
|
xyB=(-30, -20), coordsB="figure pixels",
|
|
arrowstyle="->", shrinkB=5)
|
|
fig_test.add_artist(con)
|
|
|
|
ax1, ax2 = fig_ref.subplots(1, 2)
|
|
bb = fig_ref.bbox
|
|
# Necessary so that pixel counts match on both sides.
|
|
plt.rcParams["savefig.dpi"] = plt.rcParams["figure.dpi"]
|
|
con = mpatches.ConnectionPatch(
|
|
xyA=(.3, .2), coordsA="data", axesA=ax1,
|
|
xyB=(bb.width - 30, bb.height - 20), coordsB="figure pixels",
|
|
arrowstyle="->", shrinkB=5)
|
|
fig_ref.add_artist(con)
|
|
|
|
|
|
def test_datetime_rectangle():
|
|
# Check that creating a rectangle with timedeltas doesn't fail
|
|
from datetime import datetime, timedelta
|
|
|
|
start = datetime(2017, 1, 1, 0, 0, 0)
|
|
delta = timedelta(seconds=16)
|
|
patch = mpatches.Rectangle((start, 0), delta, 1)
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.add_patch(patch)
|
|
|
|
|
|
def test_datetime_datetime_fails():
|
|
from datetime import datetime
|
|
|
|
start = datetime(2017, 1, 1, 0, 0, 0)
|
|
dt_delta = datetime(1970, 1, 5) # Will be 5 days if units are done wrong
|
|
|
|
with pytest.raises(TypeError):
|
|
mpatches.Rectangle((start, 0), dt_delta, 1)
|
|
|
|
with pytest.raises(TypeError):
|
|
mpatches.Rectangle((0, start), 1, dt_delta)
|
|
|
|
|
|
def test_contains_point():
|
|
ell = mpatches.Ellipse((0.5, 0.5), 0.5, 1.0, 0)
|
|
points = [(0.0, 0.5), (0.2, 0.5), (0.25, 0.5), (0.5, 0.5)]
|
|
path = ell.get_path()
|
|
transform = ell.get_transform()
|
|
radius = ell._process_radius(None)
|
|
expected = np.array([path.contains_point(point,
|
|
transform,
|
|
radius) for point in points])
|
|
result = np.array([ell.contains_point(point) for point in points])
|
|
assert np.all(result == expected)
|
|
|
|
|
|
def test_contains_points():
|
|
ell = mpatches.Ellipse((0.5, 0.5), 0.5, 1.0, 0)
|
|
points = [(0.0, 0.5), (0.2, 0.5), (0.25, 0.5), (0.5, 0.5)]
|
|
path = ell.get_path()
|
|
transform = ell.get_transform()
|
|
radius = ell._process_radius(None)
|
|
expected = path.contains_points(points, transform, radius)
|
|
result = ell.contains_points(points)
|
|
assert np.all(result == expected)
|
|
|
|
|
|
# Currently fails with pdf/svg, probably because some parts assume a dpi of 72.
|
|
@check_figures_equal(extensions=["png"])
|
|
def test_shadow(fig_test, fig_ref):
|
|
xy = np.array([.2, .3])
|
|
dxy = np.array([.1, .2])
|
|
# We need to work around the nonsensical (dpi-dependent) interpretation of
|
|
# offsets by the Shadow class...
|
|
plt.rcParams["savefig.dpi"] = "figure"
|
|
# Test image.
|
|
a1 = fig_test.subplots()
|
|
rect = mpatches.Rectangle(xy=xy, width=.5, height=.5)
|
|
shadow = mpatches.Shadow(rect, ox=dxy[0], oy=dxy[1])
|
|
a1.add_patch(rect)
|
|
a1.add_patch(shadow)
|
|
# Reference image.
|
|
a2 = fig_ref.subplots()
|
|
rect = mpatches.Rectangle(xy=xy, width=.5, height=.5)
|
|
shadow = mpatches.Rectangle(
|
|
xy=xy + fig_ref.dpi / 72 * dxy, width=.5, height=.5,
|
|
fc=np.asarray(mcolors.to_rgb(rect.get_facecolor())) * .3,
|
|
ec=np.asarray(mcolors.to_rgb(rect.get_facecolor())) * .3,
|
|
alpha=.5)
|
|
a2.add_patch(shadow)
|
|
a2.add_patch(rect)
|
|
|
|
|
|
def test_fancyarrow_units():
|
|
from datetime import datetime
|
|
# Smoke test to check that FancyArrowPatch works with units
|
|
dtime = datetime(2000, 1, 1)
|
|
fig, ax = plt.subplots()
|
|
arrow = FancyArrowPatch((0, dtime), (0.01, dtime))
|
|
ax.add_patch(arrow)
|
|
|
|
|
|
@image_comparison(["large_arc.svg"], style="mpl20")
|
|
def test_large_arc():
|
|
fig, (ax1, ax2) = plt.subplots(1, 2)
|
|
x = 210
|
|
y = -2115
|
|
diameter = 4261
|
|
for ax in [ax1, ax2]:
|
|
a = mpatches.Arc((x, y), diameter, diameter, lw=2, color='k')
|
|
ax.add_patch(a)
|
|
ax.set_axis_off()
|
|
ax.set_aspect('equal')
|
|
# force the high accuracy case
|
|
ax1.set_xlim(7, 8)
|
|
ax1.set_ylim(5, 6)
|
|
|
|
# force the low accuracy case
|
|
ax2.set_xlim(-25000, 18000)
|
|
ax2.set_ylim(-20000, 6600)
|
|
|
|
|
|
@image_comparison(["all_quadrants_arcs.svg"], style="mpl20")
|
|
def test_rotated_arcs():
|
|
fig, ax_arr = plt.subplots(2, 2, squeeze=False, figsize=(10, 10))
|
|
|
|
scale = 10_000_000
|
|
diag_centers = ((-1, -1), (-1, 1), (1, 1), (1, -1))
|
|
on_axis_centers = ((0, 1), (1, 0), (0, -1), (-1, 0))
|
|
skews = ((2, 2), (2, 1/10), (2, 1/100), (2, 1/1000))
|
|
|
|
for ax, (sx, sy) in zip(ax_arr.ravel(), skews):
|
|
k = 0
|
|
for prescale, centers in zip((1 - .0001, (1 - .0001) / np.sqrt(2)),
|
|
(on_axis_centers, diag_centers)):
|
|
for j, (x_sign, y_sign) in enumerate(centers, start=k):
|
|
a = mpatches.Arc(
|
|
(x_sign * scale * prescale,
|
|
y_sign * scale * prescale),
|
|
scale * sx,
|
|
scale * sy,
|
|
lw=4,
|
|
color=f"C{j}",
|
|
zorder=1 + j,
|
|
angle=np.rad2deg(np.arctan2(y_sign, x_sign)) % 360,
|
|
label=f'big {j}',
|
|
gid=f'big {j}'
|
|
)
|
|
ax.add_patch(a)
|
|
|
|
k = j+1
|
|
ax.set_xlim(-scale / 4000, scale / 4000)
|
|
ax.set_ylim(-scale / 4000, scale / 4000)
|
|
ax.axhline(0, color="k")
|
|
ax.axvline(0, color="k")
|
|
ax.set_axis_off()
|
|
ax.set_aspect("equal")
|
|
|
|
|
|
def test_degenerate_polygon():
|
|
point = [0, 0]
|
|
correct_extents = Bbox([point, point]).extents
|
|
assert np.all(Polygon([point]).get_extents().extents == correct_extents)
|