fr/fr_env/lib/python3.8/site-packages/matplotlib/tests/test_patches.py

566 lines
19 KiB
Python

"""
Tests specific to the patches module.
"""
import numpy as np
from numpy.testing import assert_almost_equal, assert_array_equal
import pytest
from matplotlib.patches import Polygon, Rectangle, FancyArrowPatch
from matplotlib.testing.decorators import image_comparison, check_figures_equal
from matplotlib.transforms import Bbox
import matplotlib.pyplot as plt
from matplotlib import (
collections as mcollections, colors as mcolors, patches as mpatches,
path as mpath, style as mstyle, transforms as mtransforms)
import sys
on_win = (sys.platform == 'win32')
def test_Polygon_close():
#: GitHub issue #1018 identified a bug in the Polygon handling
#: of the closed attribute; the path was not getting closed
#: when set_xy was used to set the vertices.
# open set of vertices:
xy = [[0, 0], [0, 1], [1, 1]]
# closed set:
xyclosed = xy + [[0, 0]]
# start with open path and close it:
p = Polygon(xy, closed=True)
assert_array_equal(p.get_xy(), xyclosed)
p.set_xy(xy)
assert_array_equal(p.get_xy(), xyclosed)
# start with closed path and open it:
p = Polygon(xyclosed, closed=False)
assert_array_equal(p.get_xy(), xy)
p.set_xy(xyclosed)
assert_array_equal(p.get_xy(), xy)
# start with open path and leave it open:
p = Polygon(xy, closed=False)
assert_array_equal(p.get_xy(), xy)
p.set_xy(xy)
assert_array_equal(p.get_xy(), xy)
# start with closed path and leave it closed:
p = Polygon(xyclosed, closed=True)
assert_array_equal(p.get_xy(), xyclosed)
p.set_xy(xyclosed)
assert_array_equal(p.get_xy(), xyclosed)
def test_rotate_rect():
loc = np.asarray([1.0, 2.0])
width = 2
height = 3
angle = 30.0
# A rotated rectangle
rect1 = Rectangle(loc, width, height, angle=angle)
# A non-rotated rectangle
rect2 = Rectangle(loc, width, height)
# Set up an explicit rotation matrix (in radians)
angle_rad = np.pi * angle / 180.0
rotation_matrix = np.array([[np.cos(angle_rad), -np.sin(angle_rad)],
[np.sin(angle_rad), np.cos(angle_rad)]])
# Translate to origin, rotate each vertex, and then translate back
new_verts = np.inner(rotation_matrix, rect2.get_verts() - loc).T + loc
# They should be the same
assert_almost_equal(rect1.get_verts(), new_verts)
def test_negative_rect():
# These two rectangles have the same vertices, but starting from a
# different point. (We also drop the last vertex, which is a duplicate.)
pos_vertices = Rectangle((-3, -2), 3, 2).get_verts()[:-1]
neg_vertices = Rectangle((0, 0), -3, -2).get_verts()[:-1]
assert_array_equal(np.roll(neg_vertices, 2, 0), pos_vertices)
@image_comparison(['clip_to_bbox'])
def test_clip_to_bbox():
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim([-18, 20])
ax.set_ylim([-150, 100])
path = mpath.Path.unit_regular_star(8).deepcopy()
path.vertices *= [10, 100]
path.vertices -= [5, 25]
path2 = mpath.Path.unit_circle().deepcopy()
path2.vertices *= [10, 100]
path2.vertices += [10, -25]
combined = mpath.Path.make_compound_path(path, path2)
patch = mpatches.PathPatch(
combined, alpha=0.5, facecolor='coral', edgecolor='none')
ax.add_patch(patch)
bbox = mtransforms.Bbox([[-12, -77.5], [50, -110]])
result_path = combined.clip_to_bbox(bbox)
result_patch = mpatches.PathPatch(
result_path, alpha=0.5, facecolor='green', lw=4, edgecolor='black')
ax.add_patch(result_patch)
@image_comparison(['patch_alpha_coloring'], remove_text=True)
def test_patch_alpha_coloring():
"""
Test checks that the patch and collection are rendered with the specified
alpha values in their facecolor and edgecolor.
"""
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
cut_star1 = mpath.Path(verts, codes)
cut_star2 = mpath.Path(verts + 1, codes)
ax = plt.axes()
patch = mpatches.PathPatch(cut_star1,
linewidth=5, linestyle='dashdot',
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_patch(patch)
col = mcollections.PathCollection([cut_star2],
linewidth=5, linestyles='dashdot',
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_collection(col)
ax.set_xlim([-1, 2])
ax.set_ylim([-1, 2])
@image_comparison(['patch_alpha_override'], remove_text=True)
def test_patch_alpha_override():
#: Test checks that specifying an alpha attribute for a patch or
#: collection will override any alpha component of the facecolor
#: or edgecolor.
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
cut_star1 = mpath.Path(verts, codes)
cut_star2 = mpath.Path(verts + 1, codes)
ax = plt.axes()
patch = mpatches.PathPatch(cut_star1,
linewidth=5, linestyle='dashdot',
alpha=0.25,
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_patch(patch)
col = mcollections.PathCollection([cut_star2],
linewidth=5, linestyles='dashdot',
alpha=0.25,
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_collection(col)
ax.set_xlim([-1, 2])
ax.set_ylim([-1, 2])
@pytest.mark.style('default')
def test_patch_color_none():
# Make sure the alpha kwarg does not override 'none' facecolor.
# Addresses issue #7478.
c = plt.Circle((0, 0), 1, facecolor='none', alpha=1)
assert c.get_facecolor()[0] == 0
@image_comparison(['patch_custom_linestyle'], remove_text=True)
def test_patch_custom_linestyle():
#: A test to check that patches and collections accept custom dash
#: patterns as linestyle and that they display correctly.
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
cut_star1 = mpath.Path(verts, codes)
cut_star2 = mpath.Path(verts + 1, codes)
ax = plt.axes()
patch = mpatches.PathPatch(
cut_star1,
linewidth=5, linestyle=(0, (5, 7, 10, 7)),
facecolor=(1, 0, 0), edgecolor=(0, 0, 1))
ax.add_patch(patch)
col = mcollections.PathCollection(
[cut_star2],
linewidth=5, linestyles=[(0, (5, 7, 10, 7))],
facecolor=(1, 0, 0), edgecolor=(0, 0, 1))
ax.add_collection(col)
ax.set_xlim([-1, 2])
ax.set_ylim([-1, 2])
def test_patch_linestyle_accents():
#: Test if linestyle can also be specified with short mnemonics like "--"
#: c.f. GitHub issue #2136
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
linestyles = ["-", "--", "-.", ":",
"solid", "dashed", "dashdot", "dotted"]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
for i, ls in enumerate(linestyles):
star = mpath.Path(verts + i, codes)
patch = mpatches.PathPatch(star,
linewidth=3, linestyle=ls,
facecolor=(1, 0, 0),
edgecolor=(0, 0, 1))
ax.add_patch(patch)
ax.set_xlim([-1, i + 1])
ax.set_ylim([-1, i + 1])
fig.canvas.draw()
def test_wedge_movement():
param_dict = {'center': ((0, 0), (1, 1), 'set_center'),
'r': (5, 8, 'set_radius'),
'width': (2, 3, 'set_width'),
'theta1': (0, 30, 'set_theta1'),
'theta2': (45, 50, 'set_theta2')}
init_args = {k: v[0] for k, v in param_dict.items()}
w = mpatches.Wedge(**init_args)
for attr, (old_v, new_v, func) in param_dict.items():
assert getattr(w, attr) == old_v
getattr(w, func)(new_v)
assert getattr(w, attr) == new_v
# png needs tol>=0.06, pdf tol>=1.617
@image_comparison(['wedge_range'], remove_text=True, tol=1.65 if on_win else 0)
def test_wedge_range():
ax = plt.axes()
t1 = 2.313869244286224
args = [[52.31386924, 232.31386924],
[52.313869244286224, 232.31386924428622],
[t1, t1 + 180.0],
[0, 360],
[90, 90 + 360],
[-180, 180],
[0, 380],
[45, 46],
[46, 45]]
for i, (theta1, theta2) in enumerate(args):
x = i % 3
y = i // 3
wedge = mpatches.Wedge((x * 3, y * 3), 1, theta1, theta2,
facecolor='none', edgecolor='k', lw=3)
ax.add_artist(wedge)
ax.set_xlim([-2, 8])
ax.set_ylim([-2, 9])
def test_patch_str():
"""
Check that patches have nice and working `str` representation.
Note that the logic is that `__str__` is defined such that:
str(eval(str(p))) == str(p)
"""
p = mpatches.Circle(xy=(1, 2), radius=3)
assert str(p) == 'Circle(xy=(1, 2), radius=3)'
p = mpatches.Ellipse(xy=(1, 2), width=3, height=4, angle=5)
assert str(p) == 'Ellipse(xy=(1, 2), width=3, height=4, angle=5)'
p = mpatches.Rectangle(xy=(1, 2), width=3, height=4, angle=5)
assert str(p) == 'Rectangle(xy=(1, 2), width=3, height=4, angle=5)'
p = mpatches.Wedge(center=(1, 2), r=3, theta1=4, theta2=5, width=6)
assert str(p) == 'Wedge(center=(1, 2), r=3, theta1=4, theta2=5, width=6)'
p = mpatches.Arc(xy=(1, 2), width=3, height=4, angle=5, theta1=6, theta2=7)
expected = 'Arc(xy=(1, 2), width=3, height=4, angle=5, theta1=6, theta2=7)'
assert str(p) == expected
p = mpatches.RegularPolygon((1, 2), 20, radius=5)
assert str(p) == "RegularPolygon((1, 2), 20, radius=5, orientation=0)"
p = mpatches.CirclePolygon(xy=(1, 2), radius=5, resolution=20)
assert str(p) == "CirclePolygon((1, 2), radius=5, resolution=20)"
p = mpatches.FancyBboxPatch((1, 2), width=3, height=4)
assert str(p) == "FancyBboxPatch((1, 2), width=3, height=4)"
# Further nice __str__ which cannot be `eval`uated:
path = mpath.Path([(1, 2), (2, 2), (1, 2)], closed=True)
p = mpatches.PathPatch(path)
assert str(p) == "PathPatch3((1, 2) ...)"
data = [[1, 2], [2, 2], [1, 2]]
p = mpatches.Polygon(data)
assert str(p) == "Polygon3((1, 2) ...)"
p = mpatches.FancyArrowPatch(path=path)
assert str(p)[:27] == "FancyArrowPatch(Path(array("
p = mpatches.FancyArrowPatch((1, 2), (3, 4))
assert str(p) == "FancyArrowPatch((1, 2)->(3, 4))"
p = mpatches.ConnectionPatch((1, 2), (3, 4), 'data')
assert str(p) == "ConnectionPatch((1, 2), (3, 4))"
s = mpatches.Shadow(p, 1, 1)
assert str(s) == "Shadow(ConnectionPatch((1, 2), (3, 4)))"
# Not testing Arrow, FancyArrow here
# because they seem to exist only for historical reasons.
@image_comparison(['multi_color_hatch'], remove_text=True, style='default')
def test_multi_color_hatch():
fig, ax = plt.subplots()
rects = ax.bar(range(5), range(1, 6))
for i, rect in enumerate(rects):
rect.set_facecolor('none')
rect.set_edgecolor('C{}'.format(i))
rect.set_hatch('/')
ax.autoscale_view()
ax.autoscale(False)
for i in range(5):
with mstyle.context({'hatch.color': 'C{}'.format(i)}):
r = Rectangle((i - .8 / 2, 5), .8, 1, hatch='//', fc='none')
ax.add_patch(r)
@image_comparison(['units_rectangle.png'])
def test_units_rectangle():
import matplotlib.testing.jpl_units as U
U.register()
p = mpatches.Rectangle((5*U.km, 6*U.km), 1*U.km, 2*U.km)
fig, ax = plt.subplots()
ax.add_patch(p)
ax.set_xlim([4*U.km, 7*U.km])
ax.set_ylim([5*U.km, 9*U.km])
@image_comparison(['connection_patch.png'], style='mpl20', remove_text=True)
def test_connection_patch():
fig, (ax1, ax2) = plt.subplots(1, 2)
con = mpatches.ConnectionPatch(xyA=(0.1, 0.1), xyB=(0.9, 0.9),
coordsA='data', coordsB='data',
axesA=ax2, axesB=ax1,
arrowstyle="->")
ax2.add_artist(con)
xyA = (0.6, 1.0) # in axes coordinates
xyB = (0.0, 0.2) # x in axes coordinates, y in data coordinates
coordsA = "axes fraction"
coordsB = ax2.get_yaxis_transform()
con = mpatches.ConnectionPatch(xyA=xyA, xyB=xyB, coordsA=coordsA,
coordsB=coordsB, arrowstyle="-")
ax2.add_artist(con)
@check_figures_equal(extensions=["png"])
def test_connection_patch_fig(fig_test, fig_ref):
# Test that connection patch can be added as figure artist, and that figure
# pixels count negative values from the top right corner (this API may be
# changed in the future).
ax1, ax2 = fig_test.subplots(1, 2)
con = mpatches.ConnectionPatch(
xyA=(.3, .2), coordsA="data", axesA=ax1,
xyB=(-30, -20), coordsB="figure pixels",
arrowstyle="->", shrinkB=5)
fig_test.add_artist(con)
ax1, ax2 = fig_ref.subplots(1, 2)
bb = fig_ref.bbox
# Necessary so that pixel counts match on both sides.
plt.rcParams["savefig.dpi"] = plt.rcParams["figure.dpi"]
con = mpatches.ConnectionPatch(
xyA=(.3, .2), coordsA="data", axesA=ax1,
xyB=(bb.width - 30, bb.height - 20), coordsB="figure pixels",
arrowstyle="->", shrinkB=5)
fig_ref.add_artist(con)
def test_datetime_rectangle():
# Check that creating a rectangle with timedeltas doesn't fail
from datetime import datetime, timedelta
start = datetime(2017, 1, 1, 0, 0, 0)
delta = timedelta(seconds=16)
patch = mpatches.Rectangle((start, 0), delta, 1)
fig, ax = plt.subplots()
ax.add_patch(patch)
def test_datetime_datetime_fails():
from datetime import datetime
start = datetime(2017, 1, 1, 0, 0, 0)
dt_delta = datetime(1970, 1, 5) # Will be 5 days if units are done wrong
with pytest.raises(TypeError):
mpatches.Rectangle((start, 0), dt_delta, 1)
with pytest.raises(TypeError):
mpatches.Rectangle((0, start), 1, dt_delta)
def test_contains_point():
ell = mpatches.Ellipse((0.5, 0.5), 0.5, 1.0, 0)
points = [(0.0, 0.5), (0.2, 0.5), (0.25, 0.5), (0.5, 0.5)]
path = ell.get_path()
transform = ell.get_transform()
radius = ell._process_radius(None)
expected = np.array([path.contains_point(point,
transform,
radius) for point in points])
result = np.array([ell.contains_point(point) for point in points])
assert np.all(result == expected)
def test_contains_points():
ell = mpatches.Ellipse((0.5, 0.5), 0.5, 1.0, 0)
points = [(0.0, 0.5), (0.2, 0.5), (0.25, 0.5), (0.5, 0.5)]
path = ell.get_path()
transform = ell.get_transform()
radius = ell._process_radius(None)
expected = path.contains_points(points, transform, radius)
result = ell.contains_points(points)
assert np.all(result == expected)
# Currently fails with pdf/svg, probably because some parts assume a dpi of 72.
@check_figures_equal(extensions=["png"])
def test_shadow(fig_test, fig_ref):
xy = np.array([.2, .3])
dxy = np.array([.1, .2])
# We need to work around the nonsensical (dpi-dependent) interpretation of
# offsets by the Shadow class...
plt.rcParams["savefig.dpi"] = "figure"
# Test image.
a1 = fig_test.subplots()
rect = mpatches.Rectangle(xy=xy, width=.5, height=.5)
shadow = mpatches.Shadow(rect, ox=dxy[0], oy=dxy[1])
a1.add_patch(rect)
a1.add_patch(shadow)
# Reference image.
a2 = fig_ref.subplots()
rect = mpatches.Rectangle(xy=xy, width=.5, height=.5)
shadow = mpatches.Rectangle(
xy=xy + fig_ref.dpi / 72 * dxy, width=.5, height=.5,
fc=np.asarray(mcolors.to_rgb(rect.get_facecolor())) * .3,
ec=np.asarray(mcolors.to_rgb(rect.get_facecolor())) * .3,
alpha=.5)
a2.add_patch(shadow)
a2.add_patch(rect)
def test_fancyarrow_units():
from datetime import datetime
# Smoke test to check that FancyArrowPatch works with units
dtime = datetime(2000, 1, 1)
fig, ax = plt.subplots()
arrow = FancyArrowPatch((0, dtime), (0.01, dtime))
ax.add_patch(arrow)
@image_comparison(["large_arc.svg"], style="mpl20")
def test_large_arc():
fig, (ax1, ax2) = plt.subplots(1, 2)
x = 210
y = -2115
diameter = 4261
for ax in [ax1, ax2]:
a = mpatches.Arc((x, y), diameter, diameter, lw=2, color='k')
ax.add_patch(a)
ax.set_axis_off()
ax.set_aspect('equal')
# force the high accuracy case
ax1.set_xlim(7, 8)
ax1.set_ylim(5, 6)
# force the low accuracy case
ax2.set_xlim(-25000, 18000)
ax2.set_ylim(-20000, 6600)
@image_comparison(["all_quadrants_arcs.svg"], style="mpl20")
def test_rotated_arcs():
fig, ax_arr = plt.subplots(2, 2, squeeze=False, figsize=(10, 10))
scale = 10_000_000
diag_centers = ((-1, -1), (-1, 1), (1, 1), (1, -1))
on_axis_centers = ((0, 1), (1, 0), (0, -1), (-1, 0))
skews = ((2, 2), (2, 1/10), (2, 1/100), (2, 1/1000))
for ax, (sx, sy) in zip(ax_arr.ravel(), skews):
k = 0
for prescale, centers in zip((1 - .0001, (1 - .0001) / np.sqrt(2)),
(on_axis_centers, diag_centers)):
for j, (x_sign, y_sign) in enumerate(centers, start=k):
a = mpatches.Arc(
(x_sign * scale * prescale,
y_sign * scale * prescale),
scale * sx,
scale * sy,
lw=4,
color=f"C{j}",
zorder=1 + j,
angle=np.rad2deg(np.arctan2(y_sign, x_sign)) % 360,
label=f'big {j}',
gid=f'big {j}'
)
ax.add_patch(a)
k = j+1
ax.set_xlim(-scale / 4000, scale / 4000)
ax.set_ylim(-scale / 4000, scale / 4000)
ax.axhline(0, color="k")
ax.axvline(0, color="k")
ax.set_axis_off()
ax.set_aspect("equal")
def test_degenerate_polygon():
point = [0, 0]
correct_extents = Bbox([point, point]).extents
assert np.all(Polygon([point]).get_extents().extents == correct_extents)