fr/fr_env/lib/python3.8/site-packages/skimage/morphology/misc.py

228 lines
7.4 KiB
Python

"""Miscellaneous morphology functions."""
import numpy as np
import functools
from scipy import ndimage as ndi
from .._shared.utils import warn
from .selem import _default_selem
# Our function names don't exactly correspond to ndimages.
# This dictionary translates from our names to scipy's.
funcs = ('erosion', 'dilation', 'opening', 'closing')
skimage2ndimage = {x: 'grey_' + x for x in funcs}
# These function names are the same in ndimage.
funcs = ('binary_erosion', 'binary_dilation', 'binary_opening',
'binary_closing', 'black_tophat', 'white_tophat')
skimage2ndimage.update({x: x for x in funcs})
def default_selem(func):
"""Decorator to add a default structuring element to morphology functions.
Parameters
----------
func : function
A morphology function such as erosion, dilation, opening, closing,
white_tophat, or black_tophat.
Returns
-------
func_out : function
The function, using a default structuring element of same dimension
as the input image with connectivity 1.
"""
@functools.wraps(func)
def func_out(image, selem=None, *args, **kwargs):
if selem is None:
selem = _default_selem(image.ndim)
return func(image, selem=selem, *args, **kwargs)
return func_out
def _check_dtype_supported(ar):
# Should use `issubdtype` for bool below, but there's a bug in numpy 1.7
if not (ar.dtype == bool or np.issubdtype(ar.dtype, np.integer)):
raise TypeError("Only bool or integer image types are supported. "
"Got %s." % ar.dtype)
def remove_small_objects(ar, min_size=64, connectivity=1, in_place=False):
"""Remove objects smaller than the specified size.
Expects ar to be an array with labeled objects, and removes objects
smaller than min_size. If `ar` is bool, the image is first labeled.
This leads to potentially different behavior for bool and 0-and-1
arrays.
Parameters
----------
ar : ndarray (arbitrary shape, int or bool type)
The array containing the objects of interest. If the array type is
int, the ints must be non-negative.
min_size : int, optional (default: 64)
The smallest allowable object size.
connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1)
The connectivity defining the neighborhood of a pixel. Used during
labelling if `ar` is bool.
in_place : bool, optional (default: False)
If ``True``, remove the objects in the input array itself.
Otherwise, make a copy.
Raises
------
TypeError
If the input array is of an invalid type, such as float or string.
ValueError
If the input array contains negative values.
Returns
-------
out : ndarray, same shape and type as input `ar`
The input array with small connected components removed.
Examples
--------
>>> from skimage import morphology
>>> a = np.array([[0, 0, 0, 1, 0],
... [1, 1, 1, 0, 0],
... [1, 1, 1, 0, 1]], bool)
>>> b = morphology.remove_small_objects(a, 6)
>>> b
array([[False, False, False, False, False],
[ True, True, True, False, False],
[ True, True, True, False, False]])
>>> c = morphology.remove_small_objects(a, 7, connectivity=2)
>>> c
array([[False, False, False, True, False],
[ True, True, True, False, False],
[ True, True, True, False, False]])
>>> d = morphology.remove_small_objects(a, 6, in_place=True)
>>> d is a
True
"""
# Raising type error if not int or bool
_check_dtype_supported(ar)
if in_place:
out = ar
else:
out = ar.copy()
if min_size == 0: # shortcut for efficiency
return out
if out.dtype == bool:
selem = ndi.generate_binary_structure(ar.ndim, connectivity)
ccs = np.zeros_like(ar, dtype=np.int32)
ndi.label(ar, selem, output=ccs)
else:
ccs = out
try:
component_sizes = np.bincount(ccs.ravel())
except ValueError:
raise ValueError("Negative value labels are not supported. Try "
"relabeling the input with `scipy.ndimage.label` or "
"`skimage.morphology.label`.")
if len(component_sizes) == 2 and out.dtype != bool:
warn("Only one label was provided to `remove_small_objects`. "
"Did you mean to use a boolean array?")
too_small = component_sizes < min_size
too_small_mask = too_small[ccs]
out[too_small_mask] = 0
return out
def remove_small_holes(ar, area_threshold=64, connectivity=1, in_place=False):
"""Remove contiguous holes smaller than the specified size.
Parameters
----------
ar : ndarray (arbitrary shape, int or bool type)
The array containing the connected components of interest.
area_threshold : int, optional (default: 64)
The maximum area, in pixels, of a contiguous hole that will be filled.
Replaces `min_size`.
connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1)
The connectivity defining the neighborhood of a pixel.
in_place : bool, optional (default: False)
If `True`, remove the connected components in the input array itself.
Otherwise, make a copy.
Raises
------
TypeError
If the input array is of an invalid type, such as float or string.
ValueError
If the input array contains negative values.
Returns
-------
out : ndarray, same shape and type as input `ar`
The input array with small holes within connected components removed.
Examples
--------
>>> from skimage import morphology
>>> a = np.array([[1, 1, 1, 1, 1, 0],
... [1, 1, 1, 0, 1, 0],
... [1, 0, 0, 1, 1, 0],
... [1, 1, 1, 1, 1, 0]], bool)
>>> b = morphology.remove_small_holes(a, 2)
>>> b
array([[ True, True, True, True, True, False],
[ True, True, True, True, True, False],
[ True, False, False, True, True, False],
[ True, True, True, True, True, False]])
>>> c = morphology.remove_small_holes(a, 2, connectivity=2)
>>> c
array([[ True, True, True, True, True, False],
[ True, True, True, False, True, False],
[ True, False, False, True, True, False],
[ True, True, True, True, True, False]])
>>> d = morphology.remove_small_holes(a, 2, in_place=True)
>>> d is a
True
Notes
-----
If the array type is int, it is assumed that it contains already-labeled
objects. The labels are not kept in the output image (this function always
outputs a bool image). It is suggested that labeling is completed after
using this function.
"""
_check_dtype_supported(ar)
# Creates warning if image is an integer image
if ar.dtype != bool:
warn("Any labeled images will be returned as a boolean array. "
"Did you mean to use a boolean array?", UserWarning)
if in_place:
out = ar
else:
out = ar.copy()
# Creating the inverse of ar
if in_place:
np.logical_not(out, out=out)
else:
out = np.logical_not(out)
# removing small objects from the inverse of ar
out = remove_small_objects(out, area_threshold, connectivity, in_place)
if in_place:
np.logical_not(out, out=out)
else:
out = np.logical_not(out)
return out