import numpy as np from scipy.linalg import eig from scipy.special import comb from scipy.signal import convolve __all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'morlet2', 'cwt'] def daub(p): """ The coefficients for the FIR low-pass filter producing Daubechies wavelets. p>=1 gives the order of the zero at f=1/2. There are 2p filter coefficients. Parameters ---------- p : int Order of the zero at f=1/2, can have values from 1 to 34. Returns ------- daub : ndarray Return """ sqrt = np.sqrt if p < 1: raise ValueError("p must be at least 1.") if p == 1: c = 1 / sqrt(2) return np.array([c, c]) elif p == 2: f = sqrt(2) / 8 c = sqrt(3) return f * np.array([1 + c, 3 + c, 3 - c, 1 - c]) elif p == 3: tmp = 12 * sqrt(10) z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6 z1c = np.conj(z1) f = sqrt(2) / 8 d0 = np.real((1 - z1) * (1 - z1c)) a0 = np.real(z1 * z1c) a1 = 2 * np.real(z1) return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1, a0 - 3 * a1 + 3, 3 - a1, 1]) elif p < 35: # construct polynomial and factor it if p < 35: P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1] yj = np.roots(P) else: # try different polynomial --- needs work P = [comb(p - 1 + k, k, exact=1) / 4.0**k for k in range(p)][::-1] yj = np.roots(P) / 4 # for each root, compute two z roots, select the one with |z|>1 # Build up final polynomial c = np.poly1d([1, 1])**p q = np.poly1d([1]) for k in range(p - 1): yval = yj[k] part = 2 * sqrt(yval * (yval - 1)) const = 1 - 2 * yval z1 = const + part if (abs(z1)) < 1: z1 = const - part q = q * [1, -z1] q = c * np.real(q) # Normalize result q = q / np.sum(q) * sqrt(2) return q.c[::-1] else: raise ValueError("Polynomial factorization does not work " "well for p too large.") def qmf(hk): """ Return high-pass qmf filter from low-pass Parameters ---------- hk : array_like Coefficients of high-pass filter. """ N = len(hk) - 1 asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)] return hk[::-1] * np.array(asgn) def cascade(hk, J=7): """ Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients. Parameters ---------- hk : array_like Coefficients of low-pass filter. J : int, optional Values will be computed at grid points ``K/2**J``. Default is 7. Returns ------- x : ndarray The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where ``len(hk) = len(gk) = N+1``. phi : ndarray The scaling function ``phi(x)`` at `x`: ``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N. psi : ndarray, optional The wavelet function ``psi(x)`` at `x`: ``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N. `psi` is only returned if `gk` is not None. Notes ----- The algorithm uses the vector cascade algorithm described by Strang and Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at the end. """ N = len(hk) - 1 if (J > 30 - np.log2(N + 1)): raise ValueError("Too many levels.") if (J < 1): raise ValueError("Too few levels.") # construct matrices needed nn, kk = np.ogrid[:N, :N] s2 = np.sqrt(2) # append a zero so that take works thk = np.r_[hk, 0] gk = qmf(hk) tgk = np.r_[gk, 0] indx1 = np.clip(2 * nn - kk, -1, N + 1) indx2 = np.clip(2 * nn - kk + 1, -1, N + 1) m = np.empty((2, 2, N, N), 'd') m[0, 0] = np.take(thk, indx1, 0) m[0, 1] = np.take(thk, indx2, 0) m[1, 0] = np.take(tgk, indx1, 0) m[1, 1] = np.take(tgk, indx2, 0) m *= s2 # construct the grid of points x = np.arange(0, N * (1 << J), dtype=float) / (1 << J) phi = 0 * x psi = 0 * x # find phi0, and phi1 lam, v = eig(m[0, 0]) ind = np.argmin(np.absolute(lam - 1)) # a dictionary with a binary representation of the # evaluation points x < 1 -- i.e. position is 0.xxxx v = np.real(v[:, ind]) # need scaling function to integrate to 1 so find # eigenvector normalized to sum(v,axis=0)=1 sm = np.sum(v) if sm < 0: # need scaling function to integrate to 1 v = -v sm = -sm bitdic = {'0': v / sm} bitdic['1'] = np.dot(m[0, 1], bitdic['0']) step = 1 << J phi[::step] = bitdic['0'] phi[(1 << (J - 1))::step] = bitdic['1'] psi[::step] = np.dot(m[1, 0], bitdic['0']) psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0']) # descend down the levels inserting more and more values # into bitdic -- store the values in the correct location once we # have computed them -- stored in the dictionary # for quicker use later. prevkeys = ['1'] for level in range(2, J + 1): newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys] fac = 1 << (J - level) for key in newkeys: # convert key to number num = 0 for pos in range(level): if key[pos] == '1': num += (1 << (level - 1 - pos)) pastphi = bitdic[key[1:]] ii = int(key[0]) temp = np.dot(m[0, ii], pastphi) bitdic[key] = temp phi[num * fac::step] = temp psi[num * fac::step] = np.dot(m[1, ii], pastphi) prevkeys = newkeys return x, phi, psi def morlet(M, w=5.0, s=1.0, complete=True): """ Complex Morlet wavelet. Parameters ---------- M : int Length of the wavelet. w : float, optional Omega0. Default is 5 s : float, optional Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1. complete : bool, optional Whether to use the complete or the standard version. Returns ------- morlet : (M,) ndarray See Also -------- morlet2 : Implementation of Morlet wavelet, compatible with `cwt`. scipy.signal.gausspulse Notes ----- The standard version:: pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2)) This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that this simplified version can cause admissibility problems at low values of `w`. The complete version:: pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2)) This version has a correction term to improve admissibility. For `w` greater than 5, the correction term is negligible. Note that the energy of the return wavelet is not normalised according to `s`. The fundamental frequency of this wavelet in Hz is given by ``f = 2*s*w*r / M`` where `r` is the sampling rate. Note: This function was created before `cwt` and is not compatible with it. """ x = np.linspace(-s * 2 * np.pi, s * 2 * np.pi, M) output = np.exp(1j * w * x) if complete: output -= np.exp(-0.5 * (w**2)) output *= np.exp(-0.5 * (x**2)) * np.pi**(-0.25) return output def ricker(points, a): """ Return a Ricker wavelet, also known as the "Mexican hat wavelet". It models the function: ``A * (1 - (x/a)**2) * exp(-0.5*(x/a)**2)``, where ``A = 2/(sqrt(3*a)*(pi**0.25))``. Parameters ---------- points : int Number of points in `vector`. Will be centered around 0. a : scalar Width parameter of the wavelet. Returns ------- vector : (N,) ndarray Array of length `points` in shape of ricker curve. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> points = 100 >>> a = 4.0 >>> vec2 = signal.ricker(points, a) >>> print(len(vec2)) 100 >>> plt.plot(vec2) >>> plt.show() """ A = 2 / (np.sqrt(3 * a) * (np.pi**0.25)) wsq = a**2 vec = np.arange(0, points) - (points - 1.0) / 2 xsq = vec**2 mod = (1 - xsq / wsq) gauss = np.exp(-xsq / (2 * wsq)) total = A * mod * gauss return total def morlet2(M, s, w=5): """ Complex Morlet wavelet, designed to work with `cwt`. Returns the complete version of morlet wavelet, normalised according to `s`:: exp(1j*w*x/s) * exp(-0.5*(x/s)**2) * pi**(-0.25) * sqrt(1/s) Parameters ---------- M : int Length of the wavelet. s : float Width parameter of the wavelet. w : float, optional Omega0. Default is 5 Returns ------- morlet : (M,) ndarray See Also -------- morlet : Implementation of Morlet wavelet, incompatible with `cwt` Notes ----- .. versionadded:: 1.4.0 This function was designed to work with `cwt`. Because `morlet2` returns an array of complex numbers, the `dtype` argument of `cwt` should be set to `complex128` for best results. Note the difference in implementation with `morlet`. The fundamental frequency of this wavelet in Hz is given by:: f = w*fs / (2*s*np.pi) where ``fs`` is the sampling rate and `s` is the wavelet width parameter. Similarly we can get the wavelet width parameter at ``f``:: s = w*fs / (2*f*np.pi) Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> M = 100 >>> s = 4.0 >>> w = 2.0 >>> wavelet = signal.morlet2(M, s, w) >>> plt.plot(abs(wavelet)) >>> plt.show() This example shows basic use of `morlet2` with `cwt` in time-frequency analysis: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t, dt = np.linspace(0, 1, 200, retstep=True) >>> fs = 1/dt >>> w = 6. >>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t) >>> freq = np.linspace(1, fs/2, 100) >>> widths = w*fs / (2*freq*np.pi) >>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w) >>> plt.pcolormesh(t, freq, np.abs(cwtm), cmap='viridis', shading='gouraud') >>> plt.show() """ x = np.arange(0, M) - (M - 1.0) / 2 x = x / s wavelet = np.exp(1j * w * x) * np.exp(-0.5 * x**2) * np.pi**(-0.25) output = np.sqrt(1/s) * wavelet return output def cwt(data, wavelet, widths, dtype=None, **kwargs): """ Continuous wavelet transform. Performs a continuous wavelet transform on `data`, using the `wavelet` function. A CWT performs a convolution with `data` using the `wavelet` function, which is characterized by a width parameter and length parameter. The `wavelet` function is allowed to be complex. Parameters ---------- data : (N,) ndarray data on which to perform the transform. wavelet : function Wavelet function, which should take 2 arguments. The first argument is the number of points that the returned vector will have (len(wavelet(length,width)) == length). The second is a width parameter, defining the size of the wavelet (e.g. standard deviation of a gaussian). See `ricker`, which satisfies these requirements. widths : (M,) sequence Widths to use for transform. dtype : data-type, optional The desired data type of output. Defaults to ``float64`` if the output of `wavelet` is real and ``complex128`` if it is complex. .. versionadded:: 1.4.0 kwargs Keyword arguments passed to wavelet function. .. versionadded:: 1.4.0 Returns ------- cwt: (M, N) ndarray Will have shape of (len(widths), len(data)). Notes ----- .. versionadded:: 1.4.0 For non-symmetric, complex-valued wavelets, the input signal is convolved with the time-reversed complex-conjugate of the wavelet data [1]. :: length = min(10 * width[ii], len(data)) cwt[ii,:] = signal.convolve(data, np.conj(wavelet(length, width[ii], **kwargs))[::-1], mode='same') References ---------- .. [1] S. Mallat, "A Wavelet Tour of Signal Processing (3rd Edition)", Academic Press, 2009. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 200, endpoint=False) >>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2) >>> widths = np.arange(1, 31) >>> cwtmatr = signal.cwt(sig, signal.ricker, widths) >>> plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto', ... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) >>> plt.show() """ if wavelet == ricker: window_size = kwargs.pop('window_size', None) # Determine output type if dtype is None: if np.asarray(wavelet(1, widths[0], **kwargs)).dtype.char in 'FDG': dtype = np.complex128 else: dtype = np.float64 output = np.empty((len(widths), len(data)), dtype=dtype) for ind, width in enumerate(widths): N = np.min([10 * width, len(data)]) # the conditional block below and the window_size # kwarg pop above may be removed eventually; these # are shims for 32-bit arch + NumPy <= 1.14.5 to # address gh-11095 if wavelet == ricker and window_size is None: ceil = np.ceil(N) if ceil != N: N = int(N) wavelet_data = np.conj(wavelet(N, width, **kwargs)[::-1]) output[ind] = convolve(data, wavelet_data, mode='same') return output