505 lines
17 KiB
Python
505 lines
17 KiB
Python
|
"""
|
||
|
A collection of image utilities using the Python Imaging Library (PIL).
|
||
|
|
||
|
This is a local version of utility functions from scipy that are wrapping PIL
|
||
|
functionality. These functions are deprecated in scipy 1.0.0 and will be
|
||
|
removed in scipy 1.2.0. Therefore, the functionality used in sklearn is copied
|
||
|
here. This file is taken from scipy/misc/pilutil.py in scipy
|
||
|
1.0.0. Modifications include: making this module importable if pillow is not
|
||
|
installed, removal of DeprecationWarning, removal of functions scikit-learn
|
||
|
does not need.
|
||
|
|
||
|
Copyright (c) 2001, 2002 Enthought, Inc.
|
||
|
All rights reserved.
|
||
|
|
||
|
Copyright (c) 2003-2017 SciPy Developers.
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are met:
|
||
|
|
||
|
a. Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
b. Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
c. Neither the name of Enthought nor the names of the SciPy Developers
|
||
|
may be used to endorse or promote products derived from this software
|
||
|
without specific prior written permission.
|
||
|
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
||
|
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
||
|
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
||
|
THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
"""
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
|
||
|
import numpy
|
||
|
|
||
|
from numpy import (amin, amax, ravel, asarray, arange, ones, newaxis,
|
||
|
transpose, iscomplexobj, uint8, issubdtype, array)
|
||
|
|
||
|
# Modification of original scipy pilutil.py to make this module importable if
|
||
|
# pillow is not installed. If pillow is not installed, functions will raise
|
||
|
# ImportError when called.
|
||
|
try:
|
||
|
try:
|
||
|
from PIL import Image
|
||
|
except ImportError:
|
||
|
import Image
|
||
|
pillow_installed = True
|
||
|
if not hasattr(Image, 'frombytes'):
|
||
|
Image.frombytes = Image.fromstring
|
||
|
except ImportError:
|
||
|
pillow_installed = False
|
||
|
|
||
|
__all__ = ['bytescale', 'imread', 'imsave', 'fromimage', 'toimage', 'imresize']
|
||
|
|
||
|
|
||
|
PILLOW_ERROR_MESSAGE = (
|
||
|
"The Python Imaging Library (PIL) is required to load data "
|
||
|
"from jpeg files. Please refer to "
|
||
|
"https://pillow.readthedocs.io/en/stable/installation.html "
|
||
|
"for installing PIL."
|
||
|
)
|
||
|
|
||
|
|
||
|
def bytescale(data, cmin=None, cmax=None, high=255, low=0):
|
||
|
"""
|
||
|
Byte scales an array (image).
|
||
|
|
||
|
Byte scaling means converting the input image to uint8 dtype and scaling
|
||
|
the range to ``(low, high)`` (default 0-255).
|
||
|
If the input image already has dtype uint8, no scaling is done.
|
||
|
|
||
|
This function is only available if Python Imaging Library (PIL) is installed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : ndarray
|
||
|
PIL image data array.
|
||
|
cmin : scalar, default=None
|
||
|
Bias scaling of small values. Default is ``data.min()``.
|
||
|
cmax : scalar, default=None
|
||
|
Bias scaling of large values. Default is ``data.max()``.
|
||
|
high : scalar, default=None
|
||
|
Scale max value to `high`. Default is 255.
|
||
|
low : scalar, default=None
|
||
|
Scale min value to `low`. Default is 0.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
img_array : uint8 ndarray
|
||
|
The byte-scaled array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.misc import bytescale
|
||
|
>>> img = np.array([[ 91.06794177, 3.39058326, 84.4221549 ],
|
||
|
... [ 73.88003259, 80.91433048, 4.88878881],
|
||
|
... [ 51.53875334, 34.45808177, 27.5873488 ]])
|
||
|
>>> bytescale(img)
|
||
|
array([[255, 0, 236],
|
||
|
[205, 225, 4],
|
||
|
[140, 90, 70]], dtype=uint8)
|
||
|
>>> bytescale(img, high=200, low=100)
|
||
|
array([[200, 100, 192],
|
||
|
[180, 188, 102],
|
||
|
[155, 135, 128]], dtype=uint8)
|
||
|
>>> bytescale(img, cmin=0, cmax=255)
|
||
|
array([[91, 3, 84],
|
||
|
[74, 81, 5],
|
||
|
[52, 34, 28]], dtype=uint8)
|
||
|
|
||
|
"""
|
||
|
if data.dtype == uint8:
|
||
|
return data
|
||
|
|
||
|
if high > 255:
|
||
|
raise ValueError("`high` should be less than or equal to 255.")
|
||
|
if low < 0:
|
||
|
raise ValueError("`low` should be greater than or equal to 0.")
|
||
|
if high < low:
|
||
|
raise ValueError("`high` should be greater than or equal to `low`.")
|
||
|
|
||
|
if cmin is None:
|
||
|
cmin = data.min()
|
||
|
if cmax is None:
|
||
|
cmax = data.max()
|
||
|
|
||
|
cscale = cmax - cmin
|
||
|
if cscale < 0:
|
||
|
raise ValueError("`cmax` should be larger than `cmin`.")
|
||
|
elif cscale == 0:
|
||
|
cscale = 1
|
||
|
|
||
|
scale = float(high - low) / cscale
|
||
|
bytedata = (data - cmin) * scale + low
|
||
|
return (bytedata.clip(low, high) + 0.5).astype(uint8)
|
||
|
|
||
|
|
||
|
def imread(name, flatten=False, mode=None):
|
||
|
"""
|
||
|
Read an image from a file as an array.
|
||
|
|
||
|
This function is only available if Python Imaging Library (PIL) is installed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str or file object
|
||
|
The file name or file object to be read.
|
||
|
flatten : bool, default=False
|
||
|
If True, flattens the color layers into a single gray-scale layer.
|
||
|
mode : str, default=None
|
||
|
Mode to convert image to, e.g. ``'RGB'``. See the Notes for more
|
||
|
details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
imread : ndarray
|
||
|
The array obtained by reading the image.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`imread` uses the Python Imaging Library (PIL) to read an image.
|
||
|
The following notes are from the PIL documentation.
|
||
|
|
||
|
`mode` can be one of the following strings:
|
||
|
|
||
|
* 'L' (8-bit pixels, black and white)
|
||
|
* 'P' (8-bit pixels, mapped to any other mode using a color palette)
|
||
|
* 'RGB' (3x8-bit pixels, true color)
|
||
|
* 'RGBA' (4x8-bit pixels, true color with transparency mask)
|
||
|
* 'CMYK' (4x8-bit pixels, color separation)
|
||
|
* 'YCbCr' (3x8-bit pixels, color video format)
|
||
|
* 'I' (32-bit signed integer pixels)
|
||
|
* 'F' (32-bit floating point pixels)
|
||
|
|
||
|
PIL also provides limited support for a few special modes, including
|
||
|
'LA' ('L' with alpha), 'RGBX' (true color with padding) and 'RGBa'
|
||
|
(true color with premultiplied alpha).
|
||
|
|
||
|
When translating a color image to black and white (mode 'L', 'I' or
|
||
|
'F'), the library uses the ITU-R 601-2 luma transform::
|
||
|
|
||
|
L = R * 299/1000 + G * 587/1000 + B * 114/1000
|
||
|
|
||
|
When `flatten` is True, the image is converted using mode 'F'.
|
||
|
When `mode` is not None and `flatten` is True, the image is first
|
||
|
converted according to `mode`, and the result is then flattened using
|
||
|
mode 'F'.
|
||
|
|
||
|
"""
|
||
|
if not pillow_installed:
|
||
|
raise ImportError(PILLOW_ERROR_MESSAGE)
|
||
|
|
||
|
im = Image.open(name)
|
||
|
return fromimage(im, flatten=flatten, mode=mode)
|
||
|
|
||
|
|
||
|
def imsave(name, arr, format=None):
|
||
|
"""
|
||
|
Save an array as an image.
|
||
|
|
||
|
This function is only available if Python Imaging Library (PIL) is installed.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This function uses `bytescale` under the hood to rescale images to use
|
||
|
the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
|
||
|
It will also cast data for 2-D images to ``uint32`` for ``mode=None``
|
||
|
(which is the default).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str or file object
|
||
|
Output file name or file object.
|
||
|
arr : ndarray, MxN or MxNx3 or MxNx4
|
||
|
Array containing image values. If the shape is ``MxN``, the array
|
||
|
represents a grey-level image. Shape ``MxNx3`` stores the red, green
|
||
|
and blue bands along the last dimension. An alpha layer may be
|
||
|
included, specified as the last colour band of an ``MxNx4`` array.
|
||
|
format : str, default=None
|
||
|
Image format. If omitted, the format to use is determined from the
|
||
|
file name extension. If a file object was used instead of a file name,
|
||
|
this parameter should always be used.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Construct an array of gradient intensity values and save to file:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.misc import imsave
|
||
|
>>> x = np.zeros((255, 255))
|
||
|
>>> x = np.zeros((255, 255), dtype=np.uint8)
|
||
|
>>> x[:] = np.arange(255)
|
||
|
>>> imsave('gradient.png', x)
|
||
|
|
||
|
Construct an array with three colour bands (R, G, B) and store to file:
|
||
|
|
||
|
>>> rgb = np.zeros((255, 255, 3), dtype=np.uint8)
|
||
|
>>> rgb[..., 0] = np.arange(255)
|
||
|
>>> rgb[..., 1] = 55
|
||
|
>>> rgb[..., 2] = 1 - np.arange(255)
|
||
|
>>> imsave('rgb_gradient.png', rgb)
|
||
|
|
||
|
"""
|
||
|
im = toimage(arr, channel_axis=2)
|
||
|
if format is None:
|
||
|
im.save(name)
|
||
|
else:
|
||
|
im.save(name, format)
|
||
|
return
|
||
|
|
||
|
|
||
|
def fromimage(im, flatten=False, mode=None):
|
||
|
"""
|
||
|
Return a copy of a PIL image as a numpy array.
|
||
|
|
||
|
This function is only available if Python Imaging Library (PIL) is installed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
im : PIL image
|
||
|
Input image.
|
||
|
flatten : bool, default=False
|
||
|
If true, convert the output to grey-scale.
|
||
|
mode : str, default=None
|
||
|
Mode to convert image to, e.g. ``'RGB'``. See the Notes of the
|
||
|
`imread` docstring for more details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fromimage : ndarray
|
||
|
The different colour bands/channels are stored in the
|
||
|
third dimension, such that a grey-image is MxN, an
|
||
|
RGB-image MxNx3 and an RGBA-image MxNx4.
|
||
|
|
||
|
"""
|
||
|
if not pillow_installed:
|
||
|
raise ImportError(PILLOW_ERROR_MESSAGE)
|
||
|
|
||
|
if not Image.isImageType(im):
|
||
|
raise TypeError("Input is not a PIL image.")
|
||
|
|
||
|
if mode is not None:
|
||
|
if mode != im.mode:
|
||
|
im = im.convert(mode)
|
||
|
elif im.mode == 'P':
|
||
|
# Mode 'P' means there is an indexed "palette". If we leave the mode
|
||
|
# as 'P', then when we do `a = array(im)` below, `a` will be a 2-D
|
||
|
# containing the indices into the palette, and not a 3-D array
|
||
|
# containing the RGB or RGBA values.
|
||
|
if 'transparency' in im.info:
|
||
|
im = im.convert('RGBA')
|
||
|
else:
|
||
|
im = im.convert('RGB')
|
||
|
|
||
|
if flatten:
|
||
|
im = im.convert('F')
|
||
|
elif im.mode == '1':
|
||
|
# Workaround for crash in PIL. When im is 1-bit, the call array(im)
|
||
|
# can cause a seg. fault, or generate garbage. See
|
||
|
# https://github.com/scipy/scipy/issues/2138 and
|
||
|
# https://github.com/python-pillow/Pillow/issues/350.
|
||
|
#
|
||
|
# This converts im from a 1-bit image to an 8-bit image.
|
||
|
im = im.convert('L')
|
||
|
|
||
|
a = array(im)
|
||
|
return a
|
||
|
|
||
|
_errstr = "Mode is unknown or incompatible with input array shape."
|
||
|
|
||
|
|
||
|
def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None,
|
||
|
mode=None, channel_axis=None):
|
||
|
"""Takes a numpy array and returns a PIL image.
|
||
|
|
||
|
This function is only available if Python Imaging Library (PIL) is installed.
|
||
|
|
||
|
The mode of the PIL image depends on the array shape and the `pal` and
|
||
|
`mode` keywords.
|
||
|
|
||
|
For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values
|
||
|
(from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode
|
||
|
is given as 'F' or 'I' in which case a float and/or integer array is made.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This function uses `bytescale` under the hood to rescale images to use
|
||
|
the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
|
||
|
It will also cast data for 2-D images to ``uint32`` for ``mode=None``
|
||
|
(which is the default).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For 3-D arrays, the `channel_axis` argument tells which dimension of the
|
||
|
array holds the channel data.
|
||
|
|
||
|
For 3-D arrays if one of the dimensions is 3, the mode is 'RGB'
|
||
|
by default or 'YCbCr' if selected.
|
||
|
|
||
|
The numpy array must be either 2 dimensional or 3 dimensional.
|
||
|
|
||
|
"""
|
||
|
if not pillow_installed:
|
||
|
raise ImportError(PILLOW_ERROR_MESSAGE)
|
||
|
|
||
|
data = asarray(arr)
|
||
|
if iscomplexobj(data):
|
||
|
raise ValueError("Cannot convert a complex-valued array.")
|
||
|
shape = list(data.shape)
|
||
|
valid = len(shape) == 2 or ((len(shape) == 3) and
|
||
|
((3 in shape) or (4 in shape)))
|
||
|
if not valid:
|
||
|
raise ValueError("'arr' does not have a suitable array shape for "
|
||
|
"any mode.")
|
||
|
if len(shape) == 2:
|
||
|
shape = (shape[1], shape[0]) # columns show up first
|
||
|
if mode == 'F':
|
||
|
data32 = data.astype(numpy.float32)
|
||
|
image = Image.frombytes(mode, shape, data32.tobytes())
|
||
|
return image
|
||
|
if mode in [None, 'L', 'P']:
|
||
|
bytedata = bytescale(data, high=high, low=low,
|
||
|
cmin=cmin, cmax=cmax)
|
||
|
image = Image.frombytes('L', shape, bytedata.tobytes())
|
||
|
if pal is not None:
|
||
|
image.putpalette(asarray(pal, dtype=uint8).tobytes())
|
||
|
# Becomes a mode='P' automagically.
|
||
|
elif mode == 'P': # default gray-scale
|
||
|
pal = (arange(0, 256, 1, dtype=uint8)[:, newaxis] *
|
||
|
ones((3,), dtype=uint8)[newaxis, :])
|
||
|
image.putpalette(asarray(pal, dtype=uint8).tobytes())
|
||
|
return image
|
||
|
if mode == '1': # high input gives threshold for 1
|
||
|
bytedata = (data > high)
|
||
|
image = Image.frombytes('1', shape, bytedata.tobytes())
|
||
|
return image
|
||
|
if cmin is None:
|
||
|
cmin = amin(ravel(data))
|
||
|
if cmax is None:
|
||
|
cmax = amax(ravel(data))
|
||
|
data = (data*1.0 - cmin)*(high - low)/(cmax - cmin) + low
|
||
|
if mode == 'I':
|
||
|
data32 = data.astype(numpy.uint32)
|
||
|
image = Image.frombytes(mode, shape, data32.tobytes())
|
||
|
else:
|
||
|
raise ValueError(_errstr)
|
||
|
return image
|
||
|
|
||
|
# if here then 3-d array with a 3 or a 4 in the shape length.
|
||
|
# Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
|
||
|
if channel_axis is None:
|
||
|
if (3 in shape):
|
||
|
ca = numpy.flatnonzero(asarray(shape) == 3)[0]
|
||
|
else:
|
||
|
ca = numpy.flatnonzero(asarray(shape) == 4)
|
||
|
if len(ca):
|
||
|
ca = ca[0]
|
||
|
else:
|
||
|
raise ValueError("Could not find channel dimension.")
|
||
|
else:
|
||
|
ca = channel_axis
|
||
|
|
||
|
numch = shape[ca]
|
||
|
if numch not in [3, 4]:
|
||
|
raise ValueError("Channel axis dimension is not valid.")
|
||
|
|
||
|
bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax)
|
||
|
if ca == 2:
|
||
|
strdata = bytedata.tobytes()
|
||
|
shape = (shape[1], shape[0])
|
||
|
elif ca == 1:
|
||
|
strdata = transpose(bytedata, (0, 2, 1)).tobytes()
|
||
|
shape = (shape[2], shape[0])
|
||
|
elif ca == 0:
|
||
|
strdata = transpose(bytedata, (1, 2, 0)).tobytes()
|
||
|
shape = (shape[2], shape[1])
|
||
|
if mode is None:
|
||
|
if numch == 3:
|
||
|
mode = 'RGB'
|
||
|
else:
|
||
|
mode = 'RGBA'
|
||
|
|
||
|
if mode not in ['RGB', 'RGBA', 'YCbCr', 'CMYK']:
|
||
|
raise ValueError(_errstr)
|
||
|
|
||
|
if mode in ['RGB', 'YCbCr']:
|
||
|
if numch != 3:
|
||
|
raise ValueError("Invalid array shape for mode.")
|
||
|
if mode in ['RGBA', 'CMYK']:
|
||
|
if numch != 4:
|
||
|
raise ValueError("Invalid array shape for mode.")
|
||
|
|
||
|
# Here we know data and mode is correct
|
||
|
image = Image.frombytes(mode, shape, strdata)
|
||
|
return image
|
||
|
|
||
|
|
||
|
def imresize(arr, size, interp='bilinear', mode=None):
|
||
|
"""
|
||
|
Resize an image.
|
||
|
|
||
|
This function is only available if Python Imaging Library (PIL) is installed.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This function uses `bytescale` under the hood to rescale images to use
|
||
|
the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
|
||
|
It will also cast data for 2-D images to ``uint32`` for ``mode=None``
|
||
|
(which is the default).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray
|
||
|
The array of image to be resized.
|
||
|
size : int, float or tuple
|
||
|
* int - Percentage of current size.
|
||
|
* float - Fraction of current size.
|
||
|
* tuple - Size of the output image (height, width).
|
||
|
|
||
|
interp : str, default='bilinear'
|
||
|
Interpolation to use for re-sizing ('nearest', 'lanczos', 'bilinear',
|
||
|
'bicubic' or 'cubic').
|
||
|
mode : str, default=None
|
||
|
The PIL image mode ('P', 'L', etc.) to convert `arr` before resizing.
|
||
|
If ``mode=None`` (the default), 2-D images will be treated like
|
||
|
``mode='L'``, i.e. casting to long integer. For 3-D and 4-D arrays,
|
||
|
`mode` will be set to ``'RGB'`` and ``'RGBA'`` respectively.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
imresize : ndarray
|
||
|
The resized array of image.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
toimage : Implicitly used to convert `arr` according to `mode`.
|
||
|
scipy.ndimage.zoom : More generic implementation that does not use PIL.
|
||
|
|
||
|
"""
|
||
|
im = toimage(arr, mode=mode)
|
||
|
ts = type(size)
|
||
|
if issubdtype(ts, numpy.signedinteger):
|
||
|
percent = size / 100.0
|
||
|
size = tuple((array(im.size)*percent).astype(int))
|
||
|
elif issubdtype(type(size), numpy.floating):
|
||
|
size = tuple((array(im.size)*size).astype(int))
|
||
|
else:
|
||
|
size = (size[1], size[0])
|
||
|
func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3}
|
||
|
imnew = im.resize(size, resample=func[interp])
|
||
|
return fromimage(imnew)
|