fr/fr_env/lib/python3.8/site-packages/skimage/measure/_polygon.py

169 lines
5.2 KiB
Python
Raw Normal View History

2021-02-17 12:26:31 +05:30
import numpy as np
from scipy import signal
def approximate_polygon(coords, tolerance):
"""Approximate a polygonal chain with the specified tolerance.
It is based on the Douglas-Peucker algorithm.
Note that the approximated polygon is always within the convex hull of the
original polygon.
Parameters
----------
coords : (N, 2) array
Coordinate array.
tolerance : float
Maximum distance from original points of polygon to approximated
polygonal chain. If tolerance is 0, the original coordinate array
is returned.
Returns
-------
coords : (M, 2) array
Approximated polygonal chain where M <= N.
References
----------
.. [1] https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
"""
if tolerance <= 0:
return coords
chain = np.zeros(coords.shape[0], 'bool')
# pre-allocate distance array for all points
dists = np.zeros(coords.shape[0])
chain[0] = True
chain[-1] = True
pos_stack = [(0, chain.shape[0] - 1)]
end_of_chain = False
while not end_of_chain:
start, end = pos_stack.pop()
# determine properties of current line segment
r0, c0 = coords[start, :]
r1, c1 = coords[end, :]
dr = r1 - r0
dc = c1 - c0
segment_angle = - np.arctan2(dr, dc)
segment_dist = c0 * np.sin(segment_angle) + r0 * np.cos(segment_angle)
# select points in-between line segment
segment_coords = coords[start + 1:end, :]
segment_dists = dists[start + 1:end]
# check whether to take perpendicular or euclidean distance with
# inner product of vectors
# vectors from points -> start and end
dr0 = segment_coords[:, 0] - r0
dc0 = segment_coords[:, 1] - c0
dr1 = segment_coords[:, 0] - r1
dc1 = segment_coords[:, 1] - c1
# vectors points -> start and end projected on start -> end vector
projected_lengths0 = dr0 * dr + dc0 * dc
projected_lengths1 = - dr1 * dr - dc1 * dc
perp = np.logical_and(projected_lengths0 > 0,
projected_lengths1 > 0)
eucl = np.logical_not(perp)
segment_dists[perp] = np.abs(
segment_coords[perp, 0] * np.cos(segment_angle)
+ segment_coords[perp, 1] * np.sin(segment_angle)
- segment_dist
)
segment_dists[eucl] = np.minimum(
# distance to start point
np.sqrt(dc0[eucl] ** 2 + dr0[eucl] ** 2),
# distance to end point
np.sqrt(dc1[eucl] ** 2 + dr1[eucl] ** 2)
)
if np.any(segment_dists > tolerance):
# select point with maximum distance to line
new_end = start + np.argmax(segment_dists) + 1
pos_stack.append((new_end, end))
pos_stack.append((start, new_end))
chain[new_end] = True
if len(pos_stack) == 0:
end_of_chain = True
return coords[chain, :]
# B-Spline subdivision
_SUBDIVISION_MASKS = {
# degree: (mask_even, mask_odd)
# extracted from (degree + 2)th row of Pascal's triangle
1: ([1, 1], [1, 1]),
2: ([3, 1], [1, 3]),
3: ([1, 6, 1], [0, 4, 4]),
4: ([5, 10, 1], [1, 10, 5]),
5: ([1, 15, 15, 1], [0, 6, 20, 6]),
6: ([7, 35, 21, 1], [1, 21, 35, 7]),
7: ([1, 28, 70, 28, 1], [0, 8, 56, 56, 8]),
}
def subdivide_polygon(coords, degree=2, preserve_ends=False):
"""Subdivision of polygonal curves using B-Splines.
Note that the resulting curve is always within the convex hull of the
original polygon. Circular polygons stay closed after subdivision.
Parameters
----------
coords : (N, 2) array
Coordinate array.
degree : {1, 2, 3, 4, 5, 6, 7}, optional
Degree of B-Spline. Default is 2.
preserve_ends : bool, optional
Preserve first and last coordinate of non-circular polygon. Default is
False.
Returns
-------
coords : (M, 2) array
Subdivided coordinate array.
References
----------
.. [1] http://mrl.nyu.edu/publications/subdiv-course2000/coursenotes00.pdf
"""
if degree not in _SUBDIVISION_MASKS:
raise ValueError("Invalid B-Spline degree. Only degree 1 - 7 is "
"supported.")
circular = np.all(coords[0, :] == coords[-1, :])
method = 'valid'
if circular:
# remove last coordinate because of wrapping
coords = coords[:-1, :]
# circular convolution by wrapping boundaries
method = 'same'
mask_even, mask_odd = _SUBDIVISION_MASKS[degree]
# divide by total weight
mask_even = np.array(mask_even, float) / (2 ** degree)
mask_odd = np.array(mask_odd, float) / (2 ** degree)
even = signal.convolve2d(coords.T, np.atleast_2d(mask_even), mode=method,
boundary='wrap')
odd = signal.convolve2d(coords.T, np.atleast_2d(mask_odd), mode=method,
boundary='wrap')
out = np.zeros((even.shape[1] + odd.shape[1], 2))
out[1::2] = even.T
out[::2] = odd.T
if circular:
# close polygon
out = np.vstack([out, out[0, :]])
if preserve_ends and not circular:
out = np.vstack([coords[0, :], out, coords[-1, :]])
return out