fr/fr_env/lib/python3.8/site-packages/matplotlib/tests/test_path.py

480 lines
16 KiB
Python
Raw Normal View History

2021-02-17 12:26:31 +05:30
import copy
import re
import numpy as np
from numpy.testing import assert_array_equal
import pytest
from matplotlib import patches
from matplotlib.path import Path
from matplotlib.patches import Polygon
from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt
from matplotlib import transforms
from matplotlib.backend_bases import MouseEvent
def test_empty_closed_path():
path = Path(np.zeros((0, 2)), closed=True)
assert path.vertices.shape == (0, 2)
assert path.codes is None
assert_array_equal(path.get_extents().extents,
transforms.Bbox.null().extents)
def test_readonly_path():
path = Path.unit_circle()
def modify_vertices():
path.vertices = path.vertices * 2.0
with pytest.raises(AttributeError):
modify_vertices()
def test_path_exceptions():
bad_verts1 = np.arange(12).reshape(4, 3)
with pytest.raises(ValueError,
match=re.escape(f'has shape {bad_verts1.shape}')):
Path(bad_verts1)
bad_verts2 = np.arange(12).reshape(2, 3, 2)
with pytest.raises(ValueError,
match=re.escape(f'has shape {bad_verts2.shape}')):
Path(bad_verts2)
good_verts = np.arange(12).reshape(6, 2)
bad_codes = np.arange(2)
msg = re.escape(f"Your vertices have shape {good_verts.shape} "
f"but your codes have shape {bad_codes.shape}")
with pytest.raises(ValueError, match=msg):
Path(good_verts, bad_codes)
def test_point_in_path():
# Test #1787
verts2 = [(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]
path = Path(verts2, closed=True)
points = [(0.5, 0.5), (1.5, 0.5)]
ret = path.contains_points(points)
assert ret.dtype == 'bool'
np.testing.assert_equal(ret, [True, False])
def test_contains_points_negative_radius():
path = Path.unit_circle()
points = [(0.0, 0.0), (1.25, 0.0), (0.9, 0.9)]
result = path.contains_points(points, radius=-0.5)
np.testing.assert_equal(result, [True, False, False])
_test_paths = [
# interior extrema determine extents and degenerate derivative
Path([[0, 0], [1, 0], [1, 1], [0, 1]],
[Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]),
# a quadratic curve
Path([[0, 0], [0, 1], [1, 0]], [Path.MOVETO, Path.CURVE3, Path.CURVE3]),
# a linear curve, degenerate vertically
Path([[0, 1], [1, 1]], [Path.MOVETO, Path.LINETO]),
# a point
Path([[1, 2]], [Path.MOVETO]),
]
_test_path_extents = [(0., 0., 0.75, 1.), (0., 0., 1., 0.5), (0., 1., 1., 1.),
(1., 2., 1., 2.)]
@pytest.mark.parametrize('path, extents', zip(_test_paths, _test_path_extents))
def test_exact_extents(path, extents):
# notice that if we just looked at the control points to get the bounding
# box of each curve, we would get the wrong answers. For example, for
# hard_curve = Path([[0, 0], [1, 0], [1, 1], [0, 1]],
# [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4])
# we would get that the extents area (0, 0, 1, 1). This code takes into
# account the curved part of the path, which does not typically extend all
# the way out to the control points.
# Note that counterintuitively, path.get_extents() returns a Bbox, so we
# have to get that Bbox's `.extents`.
assert np.all(path.get_extents().extents == extents)
def test_point_in_path_nan():
box = np.array([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]])
p = Path(box)
test = np.array([[np.nan, 0.5]])
contains = p.contains_points(test)
assert len(contains) == 1
assert not contains[0]
def test_nonlinear_containment():
fig, ax = plt.subplots()
ax.set(xscale="log", ylim=(0, 1))
polygon = ax.axvspan(1, 10)
assert polygon.get_path().contains_point(
ax.transData.transform((5, .5)), ax.transData)
assert not polygon.get_path().contains_point(
ax.transData.transform((.5, .5)), ax.transData)
assert not polygon.get_path().contains_point(
ax.transData.transform((50, .5)), ax.transData)
@image_comparison(['arrow_contains_point.png'],
remove_text=True, style='mpl20')
def test_arrow_contains_point():
# fix bug (#8384)
fig, ax = plt.subplots()
ax.set_xlim((0, 2))
ax.set_ylim((0, 2))
# create an arrow with Curve style
arrow = patches.FancyArrowPatch((0.5, 0.25), (1.5, 0.75),
arrowstyle='->',
mutation_scale=40)
ax.add_patch(arrow)
# create an arrow with Bracket style
arrow1 = patches.FancyArrowPatch((0.5, 1), (1.5, 1.25),
arrowstyle=']-[',
mutation_scale=40)
ax.add_patch(arrow1)
# create an arrow with other arrow style
arrow2 = patches.FancyArrowPatch((0.5, 1.5), (1.5, 1.75),
arrowstyle='fancy',
fill=False,
mutation_scale=40)
ax.add_patch(arrow2)
patches_list = [arrow, arrow1, arrow2]
# generate some points
X, Y = np.meshgrid(np.arange(0, 2, 0.1),
np.arange(0, 2, 0.1))
for k, (x, y) in enumerate(zip(X.ravel(), Y.ravel())):
xdisp, ydisp = ax.transData.transform([x, y])
event = MouseEvent('button_press_event', fig.canvas, xdisp, ydisp)
for m, patch in enumerate(patches_list):
# set the points to red only if the arrow contains the point
inside, res = patch.contains(event)
if inside:
ax.scatter(x, y, s=5, c="r")
@image_comparison(['path_clipping.svg'], remove_text=True)
def test_path_clipping():
fig = plt.figure(figsize=(6.0, 6.2))
for i, xy in enumerate([
[(200, 200), (200, 350), (400, 350), (400, 200)],
[(200, 200), (200, 350), (400, 350), (400, 100)],
[(200, 100), (200, 350), (400, 350), (400, 100)],
[(200, 100), (200, 415), (400, 350), (400, 100)],
[(200, 100), (200, 415), (400, 415), (400, 100)],
[(200, 415), (400, 415), (400, 100), (200, 100)],
[(400, 415), (400, 100), (200, 100), (200, 415)]]):
ax = fig.add_subplot(4, 2, i+1)
bbox = [0, 140, 640, 260]
ax.set_xlim(bbox[0], bbox[0] + bbox[2])
ax.set_ylim(bbox[1], bbox[1] + bbox[3])
ax.add_patch(Polygon(
xy, facecolor='none', edgecolor='red', closed=True))
@image_comparison(['semi_log_with_zero.png'], style='mpl20')
def test_log_transform_with_zero():
x = np.arange(-10, 10)
y = (1.0 - 1.0/(x**2+1))**20
fig, ax = plt.subplots()
ax.semilogy(x, y, "-o", lw=15, markeredgecolor='k')
ax.set_ylim(1e-7, 1)
ax.grid(True)
def test_make_compound_path_empty():
# We should be able to make a compound path with no arguments.
# This makes it easier to write generic path based code.
r = Path.make_compound_path()
assert r.vertices.shape == (0, 2)
def test_make_compound_path_stops():
zero = [0, 0]
paths = 3*[Path([zero, zero], [Path.MOVETO, Path.STOP])]
compound_path = Path.make_compound_path(*paths)
# the choice to not preserve the terminal STOP is arbitrary, but
# documented, so we test that it is in fact respected here
assert np.sum(compound_path.codes == Path.STOP) == 0
@image_comparison(['xkcd.png'], remove_text=True)
def test_xkcd():
np.random.seed(0)
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
with plt.xkcd():
fig, ax = plt.subplots()
ax.plot(x, y)
@image_comparison(['xkcd_marker.png'], remove_text=True)
def test_xkcd_marker():
np.random.seed(0)
x = np.linspace(0, 5, 8)
y1 = x
y2 = 5 - x
y3 = 2.5 * np.ones(8)
with plt.xkcd():
fig, ax = plt.subplots()
ax.plot(x, y1, '+', ms=10)
ax.plot(x, y2, 'o', ms=10)
ax.plot(x, y3, '^', ms=10)
@image_comparison(['marker_paths.pdf'], remove_text=True)
def test_marker_paths_pdf():
N = 7
plt.errorbar(np.arange(N),
np.ones(N) + 4,
np.ones(N))
plt.xlim(-1, N)
plt.ylim(-1, 7)
@image_comparison(['nan_path'], style='default', remove_text=True,
extensions=['pdf', 'svg', 'eps', 'png'])
def test_nan_isolated_points():
y0 = [0, np.nan, 2, np.nan, 4, 5, 6]
y1 = [np.nan, 7, np.nan, 9, 10, np.nan, 12]
fig, ax = plt.subplots()
ax.plot(y0, '-o')
ax.plot(y1, '-o')
def test_path_no_doubled_point_in_to_polygon():
hand = np.array(
[[1.64516129, 1.16145833],
[1.64516129, 1.59375],
[1.35080645, 1.921875],
[1.375, 2.18229167],
[1.68548387, 1.9375],
[1.60887097, 2.55208333],
[1.68548387, 2.69791667],
[1.76209677, 2.56770833],
[1.83064516, 1.97395833],
[1.89516129, 2.75],
[1.9516129, 2.84895833],
[2.01209677, 2.76041667],
[1.99193548, 1.99479167],
[2.11290323, 2.63020833],
[2.2016129, 2.734375],
[2.25403226, 2.60416667],
[2.14919355, 1.953125],
[2.30645161, 2.36979167],
[2.39112903, 2.36979167],
[2.41532258, 2.1875],
[2.1733871, 1.703125],
[2.07782258, 1.16666667]])
(r0, c0, r1, c1) = (1.0, 1.5, 2.1, 2.5)
poly = Path(np.vstack((hand[:, 1], hand[:, 0])).T, closed=True)
clip_rect = transforms.Bbox([[r0, c0], [r1, c1]])
poly_clipped = poly.clip_to_bbox(clip_rect).to_polygons()[0]
assert np.all(poly_clipped[-2] != poly_clipped[-1])
assert np.all(poly_clipped[-1] == poly_clipped[0])
def test_path_to_polygons():
data = [[10, 10], [20, 20]]
p = Path(data)
assert_array_equal(p.to_polygons(width=40, height=40), [])
assert_array_equal(p.to_polygons(width=40, height=40, closed_only=False),
[data])
assert_array_equal(p.to_polygons(), [])
assert_array_equal(p.to_polygons(closed_only=False), [data])
data = [[10, 10], [20, 20], [30, 30]]
closed_data = [[10, 10], [20, 20], [30, 30], [10, 10]]
p = Path(data)
assert_array_equal(p.to_polygons(width=40, height=40), [closed_data])
assert_array_equal(p.to_polygons(width=40, height=40, closed_only=False),
[data])
assert_array_equal(p.to_polygons(), [closed_data])
assert_array_equal(p.to_polygons(closed_only=False), [data])
def test_path_deepcopy():
# Should not raise any error
verts = [[0, 0], [1, 1]]
codes = [Path.MOVETO, Path.LINETO]
path1 = Path(verts)
path2 = Path(verts, codes)
copy.deepcopy(path1)
copy.deepcopy(path2)
@pytest.mark.parametrize('phi', np.concatenate([
np.array([0, 15, 30, 45, 60, 75, 90, 105, 120, 135]) + delta
for delta in [-1, 0, 1]]))
def test_path_intersect_path(phi):
# test for the range of intersection angles
eps_array = [1e-5, 1e-8, 1e-10, 1e-12]
transform = transforms.Affine2D().rotate(np.deg2rad(phi))
# a and b intersect at angle phi
a = Path([(-2, 0), (2, 0)])
b = transform.transform_path(a)
assert a.intersects_path(b) and b.intersects_path(a)
# a and b touch at angle phi at (0, 0)
a = Path([(0, 0), (2, 0)])
b = transform.transform_path(a)
assert a.intersects_path(b) and b.intersects_path(a)
# a and b are orthogonal and intersect at (0, 3)
a = transform.transform_path(Path([(0, 1), (0, 3)]))
b = transform.transform_path(Path([(1, 3), (0, 3)]))
assert a.intersects_path(b) and b.intersects_path(a)
# a and b are collinear and intersect at (0, 3)
a = transform.transform_path(Path([(0, 1), (0, 3)]))
b = transform.transform_path(Path([(0, 5), (0, 3)]))
assert a.intersects_path(b) and b.intersects_path(a)
# self-intersect
assert a.intersects_path(a)
# a contains b
a = transform.transform_path(Path([(0, 0), (5, 5)]))
b = transform.transform_path(Path([(1, 1), (3, 3)]))
assert a.intersects_path(b) and b.intersects_path(a)
# a and b are collinear but do not intersect
a = transform.transform_path(Path([(0, 1), (0, 5)]))
b = transform.transform_path(Path([(3, 0), (3, 3)]))
assert not a.intersects_path(b) and not b.intersects_path(a)
# a and b are on the same line but do not intersect
a = transform.transform_path(Path([(0, 1), (0, 5)]))
b = transform.transform_path(Path([(0, 6), (0, 7)]))
assert not a.intersects_path(b) and not b.intersects_path(a)
# Note: 1e-13 is the absolute tolerance error used for
# `isclose` function from src/_path.h
# a and b are parallel but do not touch
for eps in eps_array:
a = transform.transform_path(Path([(0, 1), (0, 5)]))
b = transform.transform_path(Path([(0 + eps, 1), (0 + eps, 5)]))
assert not a.intersects_path(b) and not b.intersects_path(a)
# a and b are on the same line but do not intersect (really close)
for eps in eps_array:
a = transform.transform_path(Path([(0, 1), (0, 5)]))
b = transform.transform_path(Path([(0, 5 + eps), (0, 7)]))
assert not a.intersects_path(b) and not b.intersects_path(a)
# a and b are on the same line and intersect (really close)
for eps in eps_array:
a = transform.transform_path(Path([(0, 1), (0, 5)]))
b = transform.transform_path(Path([(0, 5 - eps), (0, 7)]))
assert a.intersects_path(b) and b.intersects_path(a)
# b is the same as a but with an extra point
a = transform.transform_path(Path([(0, 1), (0, 5)]))
b = transform.transform_path(Path([(0, 1), (0, 2), (0, 5)]))
assert a.intersects_path(b) and b.intersects_path(a)
@pytest.mark.parametrize('offset', range(-720, 361, 45))
def test_full_arc(offset):
low = offset
high = 360 + offset
path = Path.arc(low, high)
mins = np.min(path.vertices, axis=0)
maxs = np.max(path.vertices, axis=0)
np.testing.assert_allclose(mins, -1)
np.testing.assert_allclose(maxs, 1)
def test_disjoint_zero_length_segment():
this_path = Path(
np.array([
[824.85064295, 2056.26489203],
[861.69033931, 2041.00539016],
[868.57864109, 2057.63522175],
[831.73894473, 2072.89472361],
[824.85064295, 2056.26489203]]),
np.array([1, 2, 2, 2, 79], dtype=Path.code_type))
outline_path = Path(
np.array([
[859.91051028, 2165.38461538],
[859.06772495, 2149.30331334],
[859.06772495, 2181.46591743],
[859.91051028, 2165.38461538],
[859.91051028, 2165.38461538]]),
np.array([1, 2, 2, 2, 2],
dtype=Path.code_type))
assert not outline_path.intersects_path(this_path)
assert not this_path.intersects_path(outline_path)
def test_intersect_zero_length_segment():
this_path = Path(
np.array([
[0, 0],
[1, 1],
]))
outline_path = Path(
np.array([
[1, 0],
[.5, .5],
[.5, .5],
[0, 1],
]))
assert outline_path.intersects_path(this_path)
assert this_path.intersects_path(outline_path)
def test_cleanup_closepoly():
# if the first connected component of a Path ends in a CLOSEPOLY, but that
# component contains a NaN, then Path.cleaned should ignore not just the
# control points but also the CLOSEPOLY, since it has nowhere valid to
# point.
paths = [
Path([[np.nan, np.nan], [np.nan, np.nan]],
[Path.MOVETO, Path.CLOSEPOLY]),
# we trigger a different path in the C++ code if we don't pass any
# codes explicitly, so we must also make sure that this works
Path([[np.nan, np.nan], [np.nan, np.nan]]),
# we should also make sure that this cleanup works if there's some
# multi-vertex curves
Path([[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan],
[np.nan, np.nan]],
[Path.MOVETO, Path.CURVE3, Path.CURVE3, Path.CLOSEPOLY])
]
for p in paths:
cleaned = p.cleaned(remove_nans=True)
assert len(cleaned) == 1
assert cleaned.codes[0] == Path.STOP