fr/fr_env/lib/python3.8/site-packages/skimage/util/arraycrop.py

73 lines
2.4 KiB
Python
Raw Permalink Normal View History

2021-02-17 12:26:31 +05:30
"""
The arraycrop module contains functions to crop values from the edges of an
n-dimensional array.
"""
import numpy as np
__all__ = ['crop']
def crop(ar, crop_width, copy=False, order='K'):
"""Crop array `ar` by `crop_width` along each dimension.
Parameters
----------
ar : array-like of rank N
Input array.
crop_width : {sequence, int}
Number of values to remove from the edges of each axis.
``((before_1, after_1),`` ... ``(before_N, after_N))`` specifies
unique crop widths at the start and end of each axis.
``((before, after),) or (before, after)`` specifies
a fixed start and end crop for every axis.
``(n,)`` or ``n`` for integer ``n`` is a shortcut for
before = after = ``n`` for all axes.
copy : bool, optional
If `True`, ensure the returned array is a contiguous copy. Normally,
a crop operation will return a discontiguous view of the underlying
input array.
order : {'C', 'F', 'A', 'K'}, optional
If ``copy==True``, control the memory layout of the copy. See
``np.copy``.
Returns
-------
cropped : array
The cropped array. If ``copy=False`` (default), this is a sliced
view of the input array.
"""
ar = np.array(ar, copy=False)
if isinstance(crop_width, int):
crops = [[crop_width, crop_width]] * ar.ndim
elif isinstance(crop_width[0], int):
if len(crop_width) == 1:
crops = [[crop_width[0], crop_width[0]]] * ar.ndim
elif len(crop_width) == 2:
crops = [crop_width] * ar.ndim
else:
raise ValueError(
f"crop_width has an invalid length: {len(crop_width)}\n"
"crop_width should be a sequence of N pairs, "
"a single pair, or a single integer"
)
elif len(crop_width) == 1:
crops = [crop_width[0]] * ar.ndim
elif len(crop_width) == ar.ndim:
crops = crop_width
else:
raise ValueError(
f"crop_width has an invalid length: {len(crop_width)}\n"
"crop_width should be a sequence of N pairs, "
"a single pair, or a single integer"
)
slices = tuple(slice(a, ar.shape[i] - b)
for i, (a, b) in enumerate(crops))
if copy:
cropped = np.array(ar[slices], order=order, copy=True)
else:
cropped = ar[slices]
return cropped