fr/fr_env/lib/python3.8/site-packages/skimage/restoration/inpaint.py

153 lines
5.1 KiB
Python
Raw Permalink Normal View History

2021-02-17 12:26:31 +05:30
import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve
import scipy.ndimage as ndi
from scipy.ndimage.filters import laplace
import skimage
from ..measure import label
def _get_neighborhood(nd_idx, radius, nd_shape):
bounds_lo = (nd_idx - radius).clip(min=0)
bounds_hi = (nd_idx + radius + 1).clip(max=nd_shape)
return bounds_lo, bounds_hi
def _inpaint_biharmonic_single_channel(mask, out, limits):
# Initialize sparse matrices
matrix_unknown = sparse.lil_matrix((np.sum(mask), out.size))
matrix_known = sparse.lil_matrix((np.sum(mask), out.size))
# Find indexes of masked points in flatten array
mask_i = np.ravel_multi_index(np.where(mask), mask.shape)
# Find masked points and prepare them to be easily enumerate over
mask_pts = np.stack(np.where(mask), axis=-1)
# Iterate over masked points
for mask_pt_n, mask_pt_idx in enumerate(mask_pts):
# Get bounded neighborhood of selected radius
b_lo, b_hi = _get_neighborhood(mask_pt_idx, 2, out.shape)
# Create biharmonic coefficients ndarray
neigh_coef = np.zeros(b_hi - b_lo)
neigh_coef[tuple(mask_pt_idx - b_lo)] = 1
neigh_coef = laplace(laplace(neigh_coef))
# Iterate over masked point's neighborhood
it_inner = np.nditer(neigh_coef, flags=['multi_index'])
for coef in it_inner:
if coef == 0:
continue
tmp_pt_idx = np.add(b_lo, it_inner.multi_index)
tmp_pt_i = np.ravel_multi_index(tmp_pt_idx, mask.shape)
if mask[tuple(tmp_pt_idx)]:
matrix_unknown[mask_pt_n, tmp_pt_i] = coef
else:
matrix_known[mask_pt_n, tmp_pt_i] = coef
# Prepare diagonal matrix
flat_diag_image = sparse.dia_matrix((out.flatten(), np.array([0])),
shape=(out.size, out.size))
# Calculate right hand side as a sum of known matrix's columns
matrix_known = matrix_known.tocsr()
rhs = -(matrix_known * flat_diag_image).sum(axis=1)
# Solve linear system for masked points
matrix_unknown = matrix_unknown[:, mask_i]
matrix_unknown = sparse.csr_matrix(matrix_unknown)
result = spsolve(matrix_unknown, rhs)
# Handle enormous values
result = np.clip(result, *limits)
result = result.ravel()
# Substitute masked points with inpainted versions
for mask_pt_n, mask_pt_idx in enumerate(mask_pts):
out[tuple(mask_pt_idx)] = result[mask_pt_n]
return out
def inpaint_biharmonic(image, mask, multichannel=False):
"""Inpaint masked points in image with biharmonic equations.
Parameters
----------
image : (M[, N[, ..., P]][, C]) ndarray
Input image.
mask : (M[, N[, ..., P]]) ndarray
Array of pixels to be inpainted. Have to be the same shape as one
of the 'image' channels. Unknown pixels have to be represented with 1,
known pixels - with 0.
multichannel : boolean, optional
If True, the last `image` dimension is considered as a color channel,
otherwise as spatial.
Returns
-------
out : (M[, N[, ..., P]][, C]) ndarray
Input image with masked pixels inpainted.
References
----------
.. [1] N.S.Hoang, S.B.Damelin, "On surface completion and image inpainting
by biharmonic functions: numerical aspects",
:arXiv:`1707.06567`
.. [2] C. K. Chui and H. N. Mhaskar, MRA Contextual-Recovery Extension of
Smooth Functions on Manifolds, Appl. and Comp. Harmonic Anal.,
28 (2010), 104-113,
:DOI:`10.1016/j.acha.2009.04.004`
Examples
--------
>>> img = np.tile(np.square(np.linspace(0, 1, 5)), (5, 1))
>>> mask = np.zeros_like(img)
>>> mask[2, 2:] = 1
>>> mask[1, 3:] = 1
>>> mask[0, 4:] = 1
>>> out = inpaint_biharmonic(img, mask)
"""
if image.ndim < 1:
raise ValueError('Input array has to be at least 1D')
img_baseshape = image.shape[:-1] if multichannel else image.shape
if img_baseshape != mask.shape:
raise ValueError('Input arrays have to be the same shape')
if np.ma.isMaskedArray(image):
raise TypeError('Masked arrays are not supported')
image = skimage.img_as_float(image)
mask = mask.astype(bool)
# Split inpainting mask into independent regions
kernel = ndi.morphology.generate_binary_structure(mask.ndim, 1)
mask_dilated = ndi.morphology.binary_dilation(mask, structure=kernel)
mask_labeled, num_labels = label(mask_dilated, return_num=True)
mask_labeled *= mask
if not multichannel:
image = image[..., np.newaxis]
out = np.copy(image)
for idx_channel in range(image.shape[-1]):
known_points = image[..., idx_channel][~mask]
limits = (np.min(known_points), np.max(known_points))
for idx_region in range(1, num_labels+1):
mask_region = mask_labeled == idx_region
_inpaint_biharmonic_single_channel(mask_region,
out[..., idx_channel], limits)
if not multichannel:
out = out[..., 0]
return out