fr/fr_env/lib/python3.8/site-packages/pandas/tests/io/conftest.py

166 lines
4.4 KiB
Python
Raw Permalink Normal View History

2021-03-02 18:34:59 +05:30
import logging
import os
import shlex
import subprocess
import time
import pytest
import pandas._testing as tm
from pandas.io.parsers import read_csv
@pytest.fixture
def tips_file(datapath):
"""Path to the tips dataset"""
return datapath("io", "data", "csv", "tips.csv")
@pytest.fixture
def jsonl_file(datapath):
"""Path to a JSONL dataset"""
return datapath("io", "parser", "data", "items.jsonl")
@pytest.fixture
def salaries_table(datapath):
"""DataFrame with the salaries dataset"""
return read_csv(datapath("io", "parser", "data", "salaries.csv"), sep="\t")
@pytest.fixture
def feather_file(datapath):
return datapath("io", "data", "feather", "feather-0_3_1.feather")
@pytest.fixture
def s3so(worker_id):
worker_id = "5" if worker_id == "master" else worker_id.lstrip("gw")
return {"client_kwargs": {"endpoint_url": f"http://127.0.0.1:555{worker_id}/"}}
@pytest.fixture(scope="session")
def s3_base(worker_id):
"""
Fixture for mocking S3 interaction.
Sets up moto server in separate process
"""
pytest.importorskip("s3fs")
pytest.importorskip("boto3")
requests = pytest.importorskip("requests")
logging.getLogger("requests").disabled = True
with tm.ensure_safe_environment_variables():
# temporary workaround as moto fails for botocore >= 1.11 otherwise,
# see https://github.com/spulec/moto/issues/1924 & 1952
os.environ.setdefault("AWS_ACCESS_KEY_ID", "foobar_key")
os.environ.setdefault("AWS_SECRET_ACCESS_KEY", "foobar_secret")
pytest.importorskip("moto", minversion="1.3.14")
pytest.importorskip("flask") # server mode needs flask too
# Launching moto in server mode, i.e., as a separate process
# with an S3 endpoint on localhost
worker_id = "5" if worker_id == "master" else worker_id.lstrip("gw")
endpoint_port = f"555{worker_id}"
endpoint_uri = f"http://127.0.0.1:{endpoint_port}/"
# pipe to null to avoid logging in terminal
proc = subprocess.Popen(
shlex.split(f"moto_server s3 -p {endpoint_port}"),
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
)
timeout = 5
while timeout > 0:
try:
# OK to go once server is accepting connections
r = requests.get(endpoint_uri)
if r.ok:
break
except Exception:
pass
timeout -= 0.1
time.sleep(0.1)
yield endpoint_uri
proc.terminate()
proc.wait()
@pytest.fixture()
def s3_resource(s3_base, tips_file, jsonl_file, feather_file):
"""
Sets up S3 bucket with contents
The primary bucket name is "pandas-test". The following datasets
are loaded.
- tips.csv
- tips.csv.gz
- tips.csv.bz2
- items.jsonl
A private bucket "cant_get_it" is also created. The boto3 s3 resource
is yielded by the fixture.
"""
import boto3
import s3fs
test_s3_files = [
("tips#1.csv", tips_file),
("tips.csv", tips_file),
("tips.csv.gz", tips_file + ".gz"),
("tips.csv.bz2", tips_file + ".bz2"),
("items.jsonl", jsonl_file),
("simple_dataset.feather", feather_file),
]
def add_tips_files(bucket_name):
for s3_key, file_name in test_s3_files:
with open(file_name, "rb") as f:
cli.put_object(Bucket=bucket_name, Key=s3_key, Body=f)
bucket = "pandas-test"
conn = boto3.resource("s3", endpoint_url=s3_base)
cli = boto3.client("s3", endpoint_url=s3_base)
try:
cli.create_bucket(Bucket=bucket)
except: # noqa
# OK is bucket already exists
pass
try:
cli.create_bucket(Bucket="cant_get_it", ACL="private")
except: # noqa
# OK is bucket already exists
pass
timeout = 2
while not cli.list_buckets()["Buckets"] and timeout > 0:
time.sleep(0.1)
timeout -= 0.1
add_tips_files(bucket)
add_tips_files("cant_get_it")
s3fs.S3FileSystem.clear_instance_cache()
yield conn
s3 = s3fs.S3FileSystem(client_kwargs={"endpoint_url": s3_base})
try:
s3.rm(bucket, recursive=True)
except: # noqa
pass
try:
s3.rm("cant_get_it", recursive=True)
except: # noqa
pass
timeout = 2
while cli.list_buckets()["Buckets"] and timeout > 0:
time.sleep(0.1)
timeout -= 0.1