fr/fr_env/lib/python3.8/site-packages/networkx/classes/multidigraph.py

872 lines
31 KiB
Python
Raw Permalink Normal View History

2021-02-17 12:26:31 +05:30
"""Base class for MultiDiGraph."""
from copy import deepcopy
import networkx as nx
from networkx.classes.digraph import DiGraph
from networkx.classes.multigraph import MultiGraph
from networkx.classes.coreviews import MultiAdjacencyView
from networkx.classes.reportviews import (
OutMultiEdgeView,
InMultiEdgeView,
DiMultiDegreeView,
OutMultiDegreeView,
InMultiDegreeView,
)
from networkx.exception import NetworkXError
class MultiDiGraph(MultiGraph, DiGraph):
"""A directed graph class that can store multiedges.
Multiedges are multiple edges between two nodes. Each edge
can hold optional data or attributes.
A MultiDiGraph holds directed edges. Self loops are allowed.
Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes. By convention `None` is not used as a node.
Edges are represented as links between nodes with optional
key/value attributes.
Parameters
----------
incoming_graph_data : input graph (optional, default: None)
Data to initialize graph. If None (default) an empty
graph is created. The data can be any format that is supported
by the to_networkx_graph() function, currently including edge list,
dict of dicts, dict of lists, NetworkX graph, NumPy matrix
or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also
--------
Graph
DiGraph
MultiGraph
OrderedMultiDiGraph
Examples
--------
Create an empty graph structure (a "null graph") with no nodes and
no edges.
>>> G = nx.MultiDiGraph()
G can be grown in several ways.
**Nodes:**
Add one node at a time:
>>> G.add_node(1)
Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).
>>> G.add_nodes_from([2, 3])
>>> G.add_nodes_from(range(100, 110))
>>> H = nx.path_graph(10)
>>> G.add_nodes_from(H)
In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.
>>> G.add_node(H)
**Edges:**
G can also be grown by adding edges.
Add one edge,
>>> key = G.add_edge(1, 2)
a list of edges,
>>> keys = G.add_edges_from([(1, 2), (1, 3)])
or a collection of edges,
>>> keys = G.add_edges_from(H.edges)
If some edges connect nodes not yet in the graph, the nodes
are added automatically. If an edge already exists, an additional
edge is created and stored using a key to identify the edge.
By default the key is the lowest unused integer.
>>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
>>> G[4]
AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})
**Attributes:**
Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.
>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}
Add node attributes using add_node(), add_nodes_from() or G.nodes
>>> G.add_node(1, time="5pm")
>>> G.add_nodes_from([3], time="2pm")
>>> G.nodes[1]
{'time': '5pm'}
>>> G.nodes[1]["room"] = 714
>>> del G.nodes[1]["room"] # remove attribute
>>> list(G.nodes(data=True))
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edges.
>>> key = G.add_edge(1, 2, weight=4.7)
>>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
>>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
>>> G[1][2][0]["weight"] = 4.7
>>> G.edges[1, 2, 0]["weight"] = 4
Warning: we protect the graph data structure by making `G.edges[1, 2]` a
read-only dict-like structure. However, you can assign to attributes
in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
data attributes: `G.edges[1, 2]['weight'] = 4`
(For multigraphs: `MG.edges[u, v, key][name] = value`).
**Shortcuts:**
Many common graph features allow python syntax to speed reporting.
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n < 3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict-like view keyed by neighbor to edge attributes
AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
Often the best way to traverse all edges of a graph is via the neighbors.
The neighbors are available as an adjacency-view `G.adj` object or via
the method `G.adjacency()`.
>>> for n, nbrsdict in G.adjacency():
... for nbr, keydict in nbrsdict.items():
... for key, eattr in keydict.items():
... if "weight" in eattr:
... # Do something useful with the edges
... pass
But the edges() method is often more convenient:
>>> for u, v, keys, weight in G.edges(data="weight", keys=True):
... if weight is not None:
... # Do something useful with the edges
... pass
**Reporting:**
Simple graph information is obtained using methods and object-attributes.
Reporting usually provides views instead of containers to reduce memory
usage. The views update as the graph is updated similarly to dict-views.
The objects `nodes, `edges` and `adj` provide access to data attributes
via lookup (e.g. `nodes[n], `edges[u, v]`, `adj[u][v]`) and iteration
(e.g. `nodes.items()`, `nodes.data('color')`,
`nodes.data('color', default='blue')` and similarly for `edges`)
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
For details on these and other miscellaneous methods, see below.
**Subclasses (Advanced):**
The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
The outer dict (node_dict) holds adjacency information keyed by node.
The next dict (adjlist_dict) represents the adjacency information and holds
edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr
dict keyed by edge key. The inner dict (edge_attr_dict) represents
the edge data and holds edge attribute values keyed by attribute names.
Each of these four dicts in the dict-of-dict-of-dict-of-dict
structure can be replaced by a user defined dict-like object.
In general, the dict-like features should be maintained but
extra features can be added. To replace one of the dicts create
a new graph class by changing the class(!) variable holding the
factory for that dict-like structure. The variable names are
node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
and graph_attr_dict_factory.
node_dict_factory : function, (default: dict)
Factory function to be used to create the dict containing node
attributes, keyed by node id.
It should require no arguments and return a dict-like object
node_attr_dict_factory: function, (default: dict)
Factory function to be used to create the node attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object
adjlist_outer_dict_factory : function, (default: dict)
Factory function to be used to create the outer-most dict
in the data structure that holds adjacency info keyed by node.
It should require no arguments and return a dict-like object.
adjlist_inner_dict_factory : function, (default: dict)
Factory function to be used to create the adjacency list
dict which holds multiedge key dicts keyed by neighbor.
It should require no arguments and return a dict-like object.
edge_key_dict_factory : function, (default: dict)
Factory function to be used to create the edge key dict
which holds edge data keyed by edge key.
It should require no arguments and return a dict-like object.
edge_attr_dict_factory : function, (default: dict)
Factory function to be used to create the edge attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object.
graph_attr_dict_factory : function, (default: dict)
Factory function to be used to create the graph attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object.
Typically, if your extension doesn't impact the data structure all
methods will inherited without issue except: `to_directed/to_undirected`.
By default these methods create a DiGraph/Graph class and you probably
want them to create your extension of a DiGraph/Graph. To facilitate
this we define two class variables that you can set in your subclass.
to_directed_class : callable, (default: DiGraph or MultiDiGraph)
Class to create a new graph structure in the `to_directed` method.
If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
to_undirected_class : callable, (default: Graph or MultiGraph)
Class to create a new graph structure in the `to_undirected` method.
If `None`, a NetworkX class (Graph or MultiGraph) is used.
Examples
--------
Please see :mod:`~networkx.classes.ordered` for examples of
creating graph subclasses by overwriting the base class `dict` with
a dictionary-like object.
"""
# node_dict_factory = dict # already assigned in Graph
# adjlist_outer_dict_factory = dict
# adjlist_inner_dict_factory = dict
edge_key_dict_factory = dict
# edge_attr_dict_factory = dict
def __init__(self, incoming_graph_data=None, **attr):
"""Initialize a graph with edges, name, or graph attributes.
Parameters
----------
incoming_graph_data : input graph
Data to initialize graph. If incoming_graph_data=None (default)
an empty graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also
--------
convert
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name="my graph")
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
>>> G = nx.Graph(e)
Arbitrary graph attribute pairs (key=value) may be assigned
>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
"""
self.edge_key_dict_factory = self.edge_key_dict_factory
DiGraph.__init__(self, incoming_graph_data, **attr)
@property
def adj(self):
"""Graph adjacency object holding the neighbors of each node.
This object is a read-only dict-like structure with node keys
and neighbor-dict values. The neighbor-dict is keyed by neighbor
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.
Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
The neighbor information is also provided by subscripting the graph.
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
For directed graphs, `G.adj` holds outgoing (successor) info.
"""
return MultiAdjacencyView(self._succ)
@property
def succ(self):
"""Graph adjacency object holding the successors of each node.
This object is a read-only dict-like structure with node keys
and neighbor-dict values. The neighbor-dict is keyed by neighbor
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.
Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
The neighbor information is also provided by subscripting the graph.
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
For directed graphs, `G.succ` is identical to `G.adj`.
"""
return MultiAdjacencyView(self._succ)
@property
def pred(self):
"""Graph adjacency object holding the predecessors of each node.
This object is a read-only dict-like structure with node keys
and neighbor-dict values. The neighbor-dict is keyed by neighbor
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.
Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
"""
return MultiAdjacencyView(self._pred)
def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
"""Add an edge between u and v.
The nodes u and v will be automatically added if they are
not already in the graph.
Edge attributes can be specified with keywords or by directly
accessing the edge's attribute dictionary. See examples below.
Parameters
----------
u_for_edge, v_for_edge : nodes
Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.
key : hashable identifier, optional (default=lowest unused integer)
Used to distinguish multiedges between a pair of nodes.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using
keyword arguments.
Returns
-------
The edge key assigned to the edge.
See Also
--------
add_edges_from : add a collection of edges
Notes
-----
To replace/update edge data, use the optional key argument
to identify a unique edge. Otherwise a new edge will be created.
NetworkX algorithms designed for weighted graphs cannot use
multigraphs directly because it is not clear how to handle
multiedge weights. Convert to Graph using edge attribute
'weight' to enable weighted graph algorithms.
Default keys are generated using the method `new_edge_key()`.
This method can be overridden by subclassing the base class and
providing a custom `new_edge_key()` method.
Examples
--------
The following all add the edge e=(1, 2) to graph G:
>>> G = nx.MultiDiGraph()
>>> e = (1, 2)
>>> key = G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
1
>>> G.add_edges_from([(1, 2)]) # add edges from iterable container
[2]
Associate data to edges using keywords:
>>> key = G.add_edge(1, 2, weight=3)
>>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
For non-string attribute keys, use subscript notation.
>>> ekey = G.add_edge(1, 2)
>>> G[1][2][0].update({0: 5})
>>> G.edges[1, 2, 0].update({0: 5})
"""
u, v = u_for_edge, v_for_edge
# add nodes
if u not in self._succ:
self._succ[u] = self.adjlist_inner_dict_factory()
self._pred[u] = self.adjlist_inner_dict_factory()
self._node[u] = self.node_attr_dict_factory()
if v not in self._succ:
self._succ[v] = self.adjlist_inner_dict_factory()
self._pred[v] = self.adjlist_inner_dict_factory()
self._node[v] = self.node_attr_dict_factory()
if key is None:
key = self.new_edge_key(u, v)
if v in self._succ[u]:
keydict = self._adj[u][v]
datadict = keydict.get(key, self.edge_key_dict_factory())
datadict.update(attr)
keydict[key] = datadict
else:
# selfloops work this way without special treatment
datadict = self.edge_attr_dict_factory()
datadict.update(attr)
keydict = self.edge_key_dict_factory()
keydict[key] = datadict
self._succ[u][v] = keydict
self._pred[v][u] = keydict
return key
def remove_edge(self, u, v, key=None):
"""Remove an edge between u and v.
Parameters
----------
u, v : nodes
Remove an edge between nodes u and v.
key : hashable identifier, optional (default=None)
Used to distinguish multiple edges between a pair of nodes.
If None remove a single (arbitrary) edge between u and v.
Raises
------
NetworkXError
If there is not an edge between u and v, or
if there is no edge with the specified key.
See Also
--------
remove_edges_from : remove a collection of edges
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.remove_edge(0, 1)
>>> e = (1, 2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
For multiple edges
>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
[0, 1, 2]
>>> G.remove_edge(1, 2) # remove a single (arbitrary) edge
For edges with keys
>>> G = nx.MultiDiGraph()
>>> G.add_edge(1, 2, key="first")
'first'
>>> G.add_edge(1, 2, key="second")
'second'
>>> G.remove_edge(1, 2, key="second")
"""
try:
d = self._adj[u][v]
except KeyError as e:
raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from e
# remove the edge with specified data
if key is None:
d.popitem()
else:
try:
del d[key]
except KeyError as e:
msg = f"The edge {u}-{v} with key {key} is not in the graph."
raise NetworkXError(msg) from e
if len(d) == 0:
# remove the key entries if last edge
del self._succ[u][v]
del self._pred[v][u]
@property
def edges(self):
"""An OutMultiEdgeView of the Graph as G.edges or G.edges().
edges(self, nbunch=None, data=False, keys=False, default=None)
The OutMultiEdgeView provides set-like operations on the edge-tuples
as well as edge attribute lookup. When called, it also provides
an EdgeDataView object which allows control of access to edge
attributes (but does not provide set-like operations).
Hence, `G.edges[u, v]['color']` provides the value of the color
attribute for edge `(u, v)` while
`for (u, v, c) in G.edges(data='color', default='red'):`
iterates through all the edges yielding the color attribute
with default `'red'` if no color attribute exists.
Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]).
If True, return edge attribute dict in 3-tuple (u, v, ddict).
If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge.
default : value, optional (default=None)
Value used for edges that don't have the requested attribute.
Only relevant if data is not True or False.
Returns
-------
edges : EdgeView
A view of edge attributes, usually it iterates over (u, v)
(u, v, k) or (u, v, k, d) tuples of edges, but can also be
used for attribute lookup as `edges[u, v, k]['foo']`.
Notes
-----
Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2])
>>> key = G.add_edge(2, 3, weight=5)
>>> [e for e in G.edges()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges(data="weight", default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True))
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data="weight", default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges([0, 2]))
[(0, 1), (2, 3)]
>>> list(G.edges(0))
[(0, 1)]
See Also
--------
in_edges, out_edges
"""
return OutMultiEdgeView(self)
# alias out_edges to edges
out_edges = edges
@property
def in_edges(self):
"""An InMultiEdgeView of the Graph as G.in_edges or G.in_edges().
in_edges(self, nbunch=None, data=False, keys=False, default=None)
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]).
If True, return edge attribute dict in 3-tuple (u, v, ddict).
If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge.
default : value, optional (default=None)
Value used for edges that don't have the requested attribute.
Only relevant if data is not True or False.
Returns
-------
in_edges : InMultiEdgeView
A view of edge attributes, usually it iterates over (u, v)
or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
used for attribute lookup as `edges[u, v, k]['foo']`.
See Also
--------
edges
"""
return InMultiEdgeView(self)
@property
def degree(self):
"""A DegreeView for the Graph as G.degree or G.degree().
The node degree is the number of edges adjacent to the node.
The weighted node degree is the sum of the edge weights for
edges incident to that node.
This object provides an iterator for (node, degree) as well as
lookup for the degree for a single node.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The name of an edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.
Returns
-------
If a single nodes is requested
deg : int
Degree of the node
OR if multiple nodes are requested
nd_iter : iterator
The iterator returns two-tuples of (node, degree).
See Also
--------
out_degree, in_degree
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.degree(0) # node 0 with degree 1
1
>>> list(G.degree([0, 1, 2]))
[(0, 1), (1, 2), (2, 2)]
"""
return DiMultiDegreeView(self)
@property
def in_degree(self):
"""A DegreeView for (node, in_degree) or in_degree for single node.
The node in-degree is the number of edges pointing in to the node.
The weighted node degree is the sum of the edge weights for
edges incident to that node.
This object provides an iterator for (node, degree) as well as
lookup for the degree for a single node.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.
Returns
-------
If a single node is requested
deg : int
Degree of the node
OR if multiple nodes are requested
nd_iter : iterator
The iterator returns two-tuples of (node, in-degree).
See Also
--------
degree, out_degree
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.in_degree(0) # node 0 with degree 0
0
>>> list(G.in_degree([0, 1, 2]))
[(0, 0), (1, 1), (2, 1)]
"""
return InMultiDegreeView(self)
@property
def out_degree(self):
"""Returns an iterator for (node, out-degree) or out-degree for single node.
out_degree(self, nbunch=None, weight=None)
The node out-degree is the number of edges pointing out of the node.
This function returns the out-degree for a single node or an iterator
for a bunch of nodes or if nothing is passed as argument.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights.
Returns
-------
If a single node is requested
deg : int
Degree of the node
OR if multiple nodes are requested
nd_iter : iterator
The iterator returns two-tuples of (node, out-degree).
See Also
--------
degree, in_degree
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.out_degree(0) # node 0 with degree 1
1
>>> list(G.out_degree([0, 1, 2]))
[(0, 1), (1, 1), (2, 1)]
"""
return OutMultiDegreeView(self)
def is_multigraph(self):
"""Returns True if graph is a multigraph, False otherwise."""
return True
def is_directed(self):
"""Returns True if graph is directed, False otherwise."""
return True
def to_undirected(self, reciprocal=False, as_view=False):
"""Returns an undirected representation of the digraph.
Parameters
----------
reciprocal : bool (optional)
If True only keep edges that appear in both directions
in the original digraph.
as_view : bool (optional, default=False)
If True return an undirected view of the original directed graph.
Returns
-------
G : MultiGraph
An undirected graph with the same name and nodes and
with edge (u, v, data) if either (u, v, data) or (v, u, data)
is in the digraph. If both edges exist in digraph and
their edge data is different, only one edge is created
with an arbitrary choice of which edge data to use.
You must check and correct for this manually if desired.
See Also
--------
MultiGraph, copy, add_edge, add_edges_from
Notes
-----
This returns a "deepcopy" of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.
This is in contrast to the similar D=MultiiGraph(G) which
returns a shallow copy of the data.
See the Python copy module for more information on shallow
and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed MultiDiGraph to use dict-like
objects in the data structure, those changes do not transfer
to the MultiGraph created by this method.
Examples
--------
>>> G = nx.path_graph(2) # or MultiGraph, etc
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> list(G2.edges)
[(0, 1)]
"""
graph_class = self.to_undirected_class()
if as_view is True:
return nx.graphviews.generic_graph_view(self, graph_class)
# deepcopy when not a view
G = graph_class()
G.graph.update(deepcopy(self.graph))
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
if reciprocal is True:
G.add_edges_from(
(u, v, key, deepcopy(data))
for u, nbrs in self._adj.items()
for v, keydict in nbrs.items()
for key, data in keydict.items()
if v in self._pred[u] and key in self._pred[u][v]
)
else:
G.add_edges_from(
(u, v, key, deepcopy(data))
for u, nbrs in self._adj.items()
for v, keydict in nbrs.items()
for key, data in keydict.items()
)
return G
def reverse(self, copy=True):
"""Returns the reverse of the graph.
The reverse is a graph with the same nodes and edges
but with the directions of the edges reversed.
Parameters
----------
copy : bool optional (default=True)
If True, return a new DiGraph holding the reversed edges.
If False, the reverse graph is created using a view of
the original graph.
"""
if copy:
H = self.__class__()
H.graph.update(deepcopy(self.graph))
H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
H.add_edges_from(
(v, u, k, deepcopy(d))
for u, v, k, d in self.edges(keys=True, data=True)
)
return H
return nx.graphviews.reverse_view(self)